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SUMMARY

We consider the design of a robust continuous sliding mode controller for the output regulation of a class
of minimum-phase nonlinear systems. Previous work has shown how to do this by incorporating a linear
servocompensator in the sliding mode design, but the transient performance is degraded when compared to
ideal sliding mode control. Extending previous ideas from the design of ‘conditional integrators’ for the
case of asymptotically constant references and disturbances, we design the servocompensator as a
conditional one that provides servocompensation only inside the boundary layer; achieving asymptotic
output regulation, but with improved transient performance. We give both regional as well as semi-global
results for error convergence, and show that the controller can be tuned to recover the performance of an
ideal sliding mode control. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The output regulation problem deals with the design of a controller to make the output of a
fixed plant asymptotically track (or reject) reference (or disturbance) signals produced by an
autonomous system called the exosystem. For multivariable, time-invariant, finite-dimensional,
linear systems, an exhaustive account of the available theory can be found, for instance, in the
works of Davison [1] and Francis and Wonham [2]. Extensions to the nonlinear case have since
been studied by many researchers [3–20]. We focus our attention on Reference [17], dealing with
a robust servomechanism design for single-input single-output nonlinear systems with well-
defined normal form and asymptotically stable zero dynamics. As pointed out in Reference [17],
the three basic ingredients of the design, common to earlier results of Khalil and coworkers, are
as follows. First, by studying the dynamics of the system on the zero-error manifold, a linear
internal model is identified, which generates the trajectories of the exosystem, along with a
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number of higher-order harmonics generated by the nonlinearities of the system. A linear
servocompensator is then synthesized and augmented with the plant. Second, an output
feedback controller is designed, using the separation approach of Esfandiari and Khalil [21], of
first designing a state feedback controller, and then using a saturated high-gain observer to
recover the performance of the state feedback design. And lastly, regional or semi-global
stabilization of the augmented system, formed of the plant and the servocompensator, is
achieved through a two-step approach, where robust control is first designed to guarantee
convergence of the error to a neighbourhood of the zero-error manifold, followed by a locally
high-gain control which stabilizes this disturbance-dependent manifold. By designing this
robust, locally high-gain controller as a continuous sliding mode controller (CSMC), it is shown
in Reference [17] that the only precise knowledge that is needed in this design is the relative
degree of the plant, the sign of its high-frequency gain and the linear internal model.

In Reference [22], we presented a modification of the traditional integrator design in
Reference [23] to address the issue of performance degradation caused by the inclusion of the
integrator, specifically the issue of integrator windup. This was done by designing the integrator
as a ‘conditional’ one, which provides integral action only inside the boundary layer. In this
paper, we consider the counterpart of Seshagiri and Khalil [22] for the servomechanism design
of Khalil [17], by designing the servocompensator as a conditional one. Both regional as well as
semi-global asymptotic results are provided. We also analytically show that the controller can be
tuned to recover the performance of an ideal (discontinuous) SMC. A result regarding ultimate
boundedness of the tracking error under internal model perturbation is recalled [17], and a
simulation example is included to demonstrate the improvement in transient performance over
the ‘conventional compensator’ design of Khalil [17].

2. SYSTEM DESCRIPTION AND ASSUMPTIONS

Consider a single-input single-output nonlinear system, modelled by

’xx ¼ f ðx; yÞ þ gðx; yÞuþ bðx; d; yÞ

y ¼ hðx; yÞ þ gðd; yÞ
ð1Þ

where x 2 Rn is the state, u 2 R is the control input, y 2 R is the measured output, d 2 Rp is a
time-varying disturbance input. The functions f ; g; b; h and g depend continuously on y; a vector
of unknown constant parameters, which belongs to a compact set Y � Rl : We assume that, for
all y 2 Y; the functions are sufficiently smooth on Uy; an open connected subset of Rn that could
depend on y; for all d in a compact set of interest. The functions b and g vanish at d ¼ 0; i.e.
bðx; 0; yÞ ¼ 0 and gð0; yÞ ¼ 0 for all y 2 Y and x 2 Uy: Our first assumption is that the
disturbance-free system has a well-defined normal form, possibly with zero dynamics.

Assumption 1
System (1), with d ¼ 0; has a uniform relative degree r4n for all x 2 Uy and y 2 Y; i.e.
Lghðx; yÞ ¼ LgLf hðx; yÞ ¼ � � � ¼ LgL

r�2
f hðx; yÞ ¼ 0 and jLgL

r�1
f hðx; yÞj5g0 > 0 where g0 is

independent of y: Moreover, there exists a diffeomorphism

Z

x

" #
¼ Tðx; yÞ ð2Þ
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of Uy onto its image that transforms (1), with d ¼ 0; into the normal form}

’ZZ ¼ fðZ; x; yÞ

’xxi ¼ xiþ1; 14i4r� 1

’xxr ¼ bðZ; x; yÞ þ aðZ; x; yÞu

y ¼ x1

ð3Þ

Assumption 2
In the presence of disturbance, the change of variables (2) transforms the system into the form}

’ZZ ¼ faðZ; x1; . . . ; xmþ1; d; yÞ

’xxi ¼ xiþ1 þCiðx1; . . . ; xi; d; yÞ; 14i4m� 1

’xxi ¼ xiþ1 þCiðZ; x1; . . . ; xi; d; yÞ; m4i4r� 1 ð4Þ

’xxr ¼ bðZ; x; yÞ þ aðZ; x; yÞuþCrðZ; x; d; yÞ

y ¼ x1 þ gðd; yÞ

where 14m4r� 1: The functions Ci vanish at d ¼ 0:

Examples of physical systems which are transformable into the normal form in Assumption 1,
uniformly in a compact set of system parameters, can be found, for example in Reference
[24, Section 4.10]. Geometric conditions under which a system can be transformed into the form
in Assumption 2 can be found, for example, in Reference [25].

Assumption 3
Let r0 be the disturbance relative degree and *rr ¼ r� r0: The disturbance and reference signals
dðtÞ and rðtÞ have the following properties for all t50:

(i) dðtÞ and its derivatives up to the *rrth derivative are bounded, and dð *rrÞðtÞ is piecewise
continuous;

(ii) rðtÞ and its derivatives up to the rth derivative are bounded, and rðrÞðtÞ is piecewise
continuous;

(iii) limt!1 ½DðtÞ � %DDðtÞ� ¼ 0 and limt!1 ½YðtÞ � %YYðtÞ� ¼ 0; where DTðtÞ ¼ ½dðtÞ � � � dð *rrÞðtÞ�;
YTðtÞ ¼ ½rðtÞ � � � rðrÞðtÞ�; and %DDðtÞ and %YYðtÞ are generated by the known exosystem

’ww ¼ S0w

%DD

%YY

" #
¼ G0w ð5Þ

where S0 has distinct eigenvalues on the imaginary axis and wðtÞ belongs to a compact setW :

}For r ¼ n; Z and the ’ZZ-equation are dropped.
}For m ¼ 1; the first ’xxi-equation is dropped.
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Let D and Y be compact subsets of Rð *rrþ1Þp and Rðrþ1Þ; respectively, such that D 2 D and
Y 2 Y ; and %ddðwÞ and %rrðwÞ denote the steady-state values of d and r as determined by exosystem
(5). Define p1ðw; yÞ to pmðw; yÞ by

p1 ¼ %rr� gð %dd; yÞ

piþ1 ¼
@pi
@w

S0w�Ciðp1; . . . ; pi; %dd; yÞ; 14i4m� 1

Assumption 4
There exists a unique mapping lðw; yÞ that solves the partial differential equation

@l
@w

S0w ¼ faðl; p1; . . . ;pm;pmþ1; %dd; yÞ

for all w 2 W ; where

pmþ1 ¼
@pm
@w

S0w�Cmðl;p1; . . . ;pm; %dd; yÞ

Let

piþ1 ¼
@pi
@w

S0w�Ciðl;p1; . . . ;pi; %dd; yÞ; mþ 14i4r� 1

The steady-state value of the control u on the zero-error manifold fZ ¼ lðw; yÞ; x ¼ pðw; yÞg is
given by

wðw; yÞ ¼
1

aðl;p; yÞ
@pr
@w

S0w� bðl;p; yÞ �Cpðl;p; %dd; yÞ
� �

Assumption 5
There exists a set of real numbers c0; . . . ; cq�1; independent of y; such that wðw; yÞ satisfies the
identity

Lq
sw ¼ c0wþ c1Lswþ � � � þ cq�1L

q�1
s w ð6Þ

for all ðw; yÞ 2 W �Y; where Lsw ¼ ð@w=@wÞS0w and the characteristic polynomial

pq � cq�1p
q�1 � � � � � c0

has distinct roots on the imaginary axis.

Motivation for Assumption 5 comes from the nonlinear version of the internal model
principle, which recognizes that in the nonlinear case, the controller must be able to reproduce
not only the trajectories generated by the exosystem, but also a number of higher order
nonlinear deformations thereof, an idea that was elaborated independently in References [7–9].
Assumption 5, along with the notion of immersion [24, Chapter 8], allows the construction of a
finite-dimensional linear internal model, as we will soon show. However, before we do so, a
couple of remarks are in order. Note that, among other things, the matrix S0 in Assumption 3,
and hence the frequencies of the exosystem need to be precisely known. For the case where
the frequencies of the exosystem are unknown, an alternate design, that makes use of an
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adaptive internal model whose ‘natural frequencies’ are automatically tuned to match those of
the unknown exosystem, can be found in Reference [26]. A recent result, which relaxes
Assumption 5, thereby removing the restriction that the solution of the regulator equations be a
polynomial in the exogenous signals, and allows for a nonlinear internal model, can be found
in Reference [27].

Defining

S ¼

0 1 � � � � � � 0

0 0 1 � � � 0

..

. ..
.

0 � � � � � � 0 1

c0 � � � � � � � � � cq�1

2
6666666664

3
7777777775
; t ¼

w

Lsw

..

.

Lq�2
s w

Lq�1
s w

2
6666666664

3
7777777775

and G ¼ ½1 0 � � � 0�1�q; it can be shown that wðw; yÞ is generated by the internal model

@tðw; yÞ
@w

S0w ¼ Stðw; yÞ

wðw; yÞ ¼ Gtðw; yÞ

To tackle the tracking problem, we apply the change of variables z ¼ Z� lðw; yÞ and
ei ¼ yði�1Þ � rði�1Þ; 14i4r and vTðtÞ ¼ ½DTðtÞ � %DDTðtÞ;YTðtÞ � %YYTðtÞ�; and note that vðtÞ
belongs to a compact set L and limt!1 vðtÞ ¼ 0: With this change of variables, system (4) can
be rewritten as

’zz ¼ f0ðz; e; v;w; yÞ

’eei ¼ eiþ1; 14i4r� 1

’eer ¼ b0ðz; e; v;w; yÞ þ a0ðz; e; v;w; yÞu

ym ¼ e1

ð7Þ

where ym is the measured tracking error. The functions f0ð�Þ; a0ð�Þ and b0ð�Þ satisfy

f0ð0; 0; 0;w; yÞ ¼ 0

a0ð0; 0; 0;w; yÞ ¼ aðlðw; yÞ;pðw; yÞ; yÞ

b0ð0; 0; 0;w; yÞ ¼ �wðw; yÞaðlðw; yÞ;pðw; yÞ; yÞ

In the new variables, the zero-error manifold is given by fz ¼ 0; e ¼ 0g: Since we do not
necessarily require our assumptions to hold globally, we need to restrict our analysis in the ðz; eÞ
variables to a region that maps back into the domain Uy: The following assumption states such a
restriction.

Assumption 6
There exist positive constants r1 and r2; independent of ðv;w; yÞ; such that for all ðv;w; yÞ 2
L�W �Y; jjejj5r1 and jjzjj5r2 ) x 2 Uy:
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Define the balls E ¼ fe 2 Rr : jjejj5r1g and Z ¼ fz 2 Rn�r : jzjj5r2g: Since L is compact,
there exists r3 > 0 such that jjvjj5r3 for all v 2 L: Therefore, jjðeT; vTÞjj5r1 þ r3 for all e 2 E and
v 2 L: We will design the control u to regulate the error e to zero and then rely on a minimum-
phase-like assumption, stated below, to guarantee boundedness of z: The assumption states that
with ðeT; vTÞ as the driving input, the system ’zz ¼ f0ðz; e; v;w; yÞ is input-to-state stable over a
certain region [28, Theorem 4.19], which implies that with ðeT; vTÞ ¼ 0; the equilibrium point
z ¼ 0 is asymptotically stable. This is strengthened in Assumption 8 to requiring that this
equilibrium point be locally exponentially stable.

Assumption 7
There exist a C1 proper function Vz : Z�W ! Rþ; possibly dependent on y; and class K
functions ai : ½0; r2Þ ! Rþði ¼ 1; 2; 3Þ and d : ½0; r1 þ r3Þ ! Rþ; independent of ðw; yÞ; such that

a1ðjjzjjÞ4Vzðz;w; yÞ4a2ðjjzjjÞ

@Vz

@z
f0ðz; e; v;w; yÞ þ

@Vz

@w
S0w4� a3ðjjzjjÞ

for all jjzjj5dðjjðeT; vTÞjjÞ; jjðeT; vTÞjj5r1 þ r3 and ðz;w; yÞ 2 Z�W �Y: Furthermore,
dðr3Þ5a�1

2 ða1ðr2ÞÞ:
k

Assumption 8
There exists a Lyapunov function Vzzðz;w; yÞ; defined in some neighbourhood of z ¼ 0; and
positive constants l1 to l4; independent of ðw; yÞ; such that

l1jjzjj24Vzzðz;w; yÞ4l2jjzjj2

@Vzz

@z
f0ðz; 0; 0;w; yÞ þ

@Vzz

@w
S0w4� l3jjzjj2

@Vzz

@z

����
����

����
����4l4jjzjj

3. CONTROL DESIGN

Our design of the conditional servocompensator follows very close to that of the conditional
integrator in Reference [22]. Basically, it involves modifying the servocompensator

’ss ¼ Ssþ Je1; JT ¼ ½0; . . . ; 0; 1�

in Reference [17] to make it ‘active’ only inside the boundary layer. Assume for the present that
the state e is available for feedback. To simplify the notation in what is to come, we define
zT ¼ ½e1 e2 � � � er�1� and K2 ¼ ½k1 k2 � � � kr�1�: In the absence of the servocompensator, one

k ISS analysis on a finite region requires (see Reference [28, Theorem 4.18]) dðsupt50jjðe
TðtÞ; vTðtÞÞjjÞ5a�1

2 ða1ðr2ÞÞ: Since
jjvjj5r3; Assumption 7 requires that dðr3Þ5a�1

2 ða1ðr2ÞÞ: Later on in the analysis, a restriction is placed on jjejj (see (16)).
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could take the sliding surface as s ¼ K2zþ ep; with K2 chosen such that the polynomial lr�1 þ
kp�1l

r�2 þ � � � þ k2lþ k1 is Hurwitz. This guarantees that when motion is confined to the
manifold s ¼ 0; the error e1 converges to zero asymptotically. Servocompensation is then
introduced by modifying the sliding surface to

s ¼ K1sþ K2zþ er ð8Þ

where s is the output of the conditional servocompensator

’ss ¼ ðS � JK1Þsþ mJ satðs=mÞ ð9Þ

with m > 0 being the width of the boundary layer and K1 chosen such that S � JK1 is Hurwitz,
which is always possible since the pair ðS; JÞ is controllable. Equation (9) represents a
perturbation of the exponentially stable system ’ss ¼ ðS � JK1Þs; with the norm of the
perturbation bounded by the small parameter m: Inside the boundary layer, i.e. when jsj4m;
Equation (9) reduces to

’ss ¼ Ssþ Jea ð10Þ

where the ‘augumented error’ ea ¼ K2zþ er is a linear combination of the tracking error and its
derivatives up to order r� 1: Equation (10) coincides with the servocompensator of Khalil [17]
only in the case when r ¼ 1:

Since the state e is unavailable for feedback, we use the following linear high-gain observer to
robustly estimate the derivatives of e1:

’#ee#eei ¼ #eeiþ1 þ giðe1 � #ee1Þ=ei; 14i4r� 1

’#ee#eer ¼ grðe1 � #ee1Þ=er
ð11Þ

where e > 0 is a design parameter to be specified, and the positive constants g1; . . . ; gr are chosen
such that the polynomial lr þ g1l

r�1 þ � � � þ gr�1lþ gr is Hurwitz. We replace s by its estimate
#ss; given by

#ss ¼ K1sþ k1e1 þ
Xr�1

i¼2

ki #eei þ #eer ð12Þ

where s is the output of

’ss ¼ ðS � JK1Þsþ mJ satð#ss=mÞ ð13Þ

The control is taken as

u ¼ �k signðLgL
r�1
f hÞ satð#ss=mÞ ð14Þ

To complete the design, we need to specify the design parameters k;m and e: The constant k is an
upper bound on the control u: Since in typical applications the control has to satisfy magnitude
constraints, we can simply choose k to be the maximum permissible control magnitude. The
parameters m and e should be chosen sufficiently small. In particular, we show in the next section
that there exists mn > 0; and for each m 2 ð0;mnÞ; there is an en ¼ enðmÞ > 0 such that asymptotic
tracking is achieved for each 05m5mn and 05e5en: The only precise knowledge about the
plant that is required to calculate and implement control (14) is its relative degree r; the sign of
its high-frequency gain LgL

r�1
f h; and the characteristic polynomial of Assumption 5.
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4. ANALYSIS

We write the closed-loop system in the singularly perturbed form

’ww ¼ S0w

’zz ¼ f0ðz; e; v;w; yÞ

’ss ¼ Assþ mJ satððs�NðeÞjÞ=mÞ

’zz ¼ Azzþ B1ðs� K1sÞ

’ss ¼ Dð�Þ � kja0ð�Þj satððs�NðeÞjÞ=mÞ

e ’jj ¼ Ajjþ eB2½b0ð�Þ � kja0ð�Þj satððs�NðeÞjÞ=mÞ�

ð15Þ

where

Az ¼

0 1 . . . . . . 0

0 0 1 . . . 0

..

. ..
.

0 . . . . . . 0 1

�k1 �k2 . . . . . . �kr�1

2
6666666664

3
7777777775

Aj ¼

�g1 1 . . . . . . 0

..

.
0 1 . . . 0

..

. ..
.

..

.
. . . . . . 0 1

�gr 0 . . . . . . 0

2
6666666666664

3
7777777777775
; Bi ¼

0

0

..

.

0

1

2
6666666664

3
7777777775

Dð�Þ ¼ b0ð�Þ þ K1Assþ mK1J satððs�NðeÞjÞ=mÞ þ K2½e2 e3 � � � er�T

NðeÞ ¼ ½0 k2er
�2

k3er�3 � � � kr�1e 1�

As ¼
def

S � JK1; and the scaled estimation j is given by

ji ¼
1

er�i
ðei � #eeiÞ; 14i4r

The current analysis shares many points in common with the ones in References [17, 22], so we
only outline the idea, taking care to highlight the differences. The main difference between the
current analysis and that in Reference [17] is treating s and z separately in the current work,
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while in Reference [17], they are lumped together in one vector. The four main steps in the
analysis, common to Reference [17] and the current work, are as follows:

Step 1: Using appropriate Lyapunov functions for each of the last five components of (15),
define a compact set Oc � Se and show that this set is a positively invariant set of the closed-loop
system for a suitable choice of controller parameters. This is done by showing that the derivative
of the Lyapunov functions are negative on the Lyapunov surfaces that form the boundaries of
this set.

Step 2: Show that for any bounded #eeð0Þ; and any ðzð0Þ; eð0Þ;sð0ÞÞ 2 Ob; where 05b5c; it is
possible to choose e such that the trajectory enters the set Oc � Se in finite time.

Step 3: Show that for a suitable choice of m and e; all trajectories starting inside Oc � Se

eventually enter into a ‘small’ positively invariant set Cm;e that shrinks to the origin as m and e
tend to zero.

Step 4: Show that for a suitable choice of m and e; every trajectory in Cm;e approaches an
invariant manifold on which the error is zero.

Noting that Az; Aj; and As are Hurwitz, we define the Lyapunov functions

VzðzÞ ¼
def zTPzz; VjðjÞ ¼

def jTPjj and VsðsÞ ¼
def sTPss

where the symmetric positive definite matrices Pz; Pj; and Ps are the solutions of

PzAz þ AT
z Pz ¼ �I

PjAj þ AT
jPj ¼ �I

and

PsAs þ AT
sPs ¼ �I

respectively. Given a positive constant c > m; define the compact set Oc by

Oc ¼
def fðz; e; sÞ : jsj4c; VsðsÞ4m2r1; VzðzÞ

4ðcþ mr2Þ
2r3; Vzðt; z; dÞ4a4ðcr4 þ r3Þg

where r1; r2; r3; and r4 are positive constants, independent of c; to be specified shortly and a4 is
a class K function defined in terms of the functions a2 and d of Assumption 7 by a4 ¼ a28d: Our
analysis will be restricted to trajectories starting inside a product set of which Oc is a component.
Therefore, in view of Assumption 6, Oc will have to be chosen to ensure that ðz; e;sÞ 2 Oc implies
that ðz; eÞ 2 Z� E: Using

e ¼ K3zþ B2ðs� K1sÞ; K3 ¼
I

�K2

" #

it can be verified that inside Oc; jjejj4r4c; where r4 ¼ ð1þ r2ÞjjK3jj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr3=lminðPzÞ

p
þ 1þ

jjK1jj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1=lminðPsÞ

p
: Using this, along with Assumption 7, it can be shown that choosing c to

satisfy

cr45minfr1; a�1
4 ða1ðr2ÞÞ � r3g ð16Þ

guarantees that ðz; eÞ 2 Z� E for all ðz; e;sÞ 2 Oc:
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Define the compact set Se by

Se ¼
def fj : VjðjÞ4e2r5g

where r5 is a positive constant to be specified shortly. We wish to show that for a suitable choice
of the controller parameters, the set Oc � Se is a positively invariant set of the closed-loop
system (15). Using the inequality

’VVs4� jjsjj2 þ 2mjjsjjjjPsJ jj

it is easy to show that ’VVs40 on the boundary Vs ¼ m2r1 for the choice r1 ¼ 4jjPsJ jj2lmaxðPsÞ:
Inside the set Oc; jjsjj4m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1=lminðPsÞ

p
¼def mr2=jjK1jj: Using this, along with jsj4c; and the

inequality

’VVz4� jjzjj2 þ 2jjzjj jjPzB1jj ðjsj þ jjK1jjjjsjjÞ

it is easy to show that ’VVz40 on the boundary Vz ¼ ðcþ mr2Þ
2r3; for the choice r3 ¼

4jjPzB1jj2lmaxðPzÞ: Next we evaluate s’ss on the boundary jsj ¼ c: To that end, let e be small
enough that jNðeÞjj4c� m; so that

sat
s�NðeÞj

m

� �
¼ sgn

s�NðeÞj
m

� �
¼ sgnðsÞ

and hence s’ss4jDð�Þj jsj � kja0ð�Þj jsj

Choosing k and c to satisfy**

k5r6 þ g1ðcÞ ð17Þ

where r6 > 0 and g1ðcÞ ¼ max jDð�Þj=ja0ð�Þj; with the maximization taken over all ðz; e;sÞ 2 Oc;
n 2 L; w 2 W ; and y 2 Y; we have s’ss50 on the boundary jsj ¼ c: Assumption 7 shows that ’VVz40
on the boundary Vz ¼ a4ðcr4 þ r3Þ: Finally, using the inequality

’VVj4�
1

e
jjjjj2 þ 2jjjjj jjPjB2jjg2ðcÞ

where g2ðcÞ ¼ max jb0ð�Þ � kja0ð�Þjsatððs�NðeÞjÞ=mÞj; with the maximization taken over the
same set as that for g1ðcÞ; it follows that ’VVj40 on the boundary Vj ¼ e2r5 for the choice
r5 > 4jjPjB2jj

2g22ðcÞlmaxðPjÞ: It follows that the set Oc � Se is positively invariant.
Our next step is to show that for any bounded #eeð0Þ; and any ðzð0Þ; eð0Þ;sð0ÞÞ 2 Ob; where

05b5c; it is possible to choose e such that the trajectory enters the set Oc � Se in finite time.
Using the fact that for ðz; e;sÞ 2 Oc; the right-hand side of the slow equation of (15) is bounded
uniformly in e; if follows that for all ðzð0Þ; eð0Þ;sð0ÞÞ 2 Ob; there is a finite time T0; independent
of e such that for all 04t4T0; ðzðtÞ; eðtÞ;sðtÞÞ 2 Oc: During this interval, using the definition of
r5; we have

’VVj4� r7ejjjjj
2 for VjðjÞ5e2r5

for some r7 > 0: This inequality can be used to show that jðtÞ enters Se within a time interval
½0;TðeÞ�; where lime!0 TðeÞ ¼ 0: Therefore, by choosing e small enough we can ensure that TðeÞ5T0:

** Inequality (17) can be viewed in two ways. Given c > 0; it is a constraint on the minimum value k: Alternatively, given
k; it is a constraint on the estimate of the region of attraction.
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The argument that Oc � Se is positively invariant can be extended to show that, for
sufficiently small e; all trajectories starting inside it reach the positively invariant set
Cm;e ¼

def Om � Se in finite time, where

Om ¼
def fðz; e; sÞ : jsj4mð1� d0Þ;VsðsÞ4m2r1;

VzðzÞ4m2r8;Vzðt; z; dÞ4a4ðmr9Þg

where 05d05r6=ð4kÞ51=4; e is small enough that jNðeÞj j5md0; and r8; r9 are positive
constants independent of m: The details of showing that the trajectories reach Cm;e in finite time
can be found in Reference [29]. The idea can be explained roughly as follows; note that Om has
four components; (i) the standard sliding mode analysis tells us that the component jsj becomes
OðmÞ in finite time, (ii) from our previous analysis jjsjj is always OðmÞ; (iii) using (i) and (ii) along
with the ’zz equation of (15), it can be shown that jjzjj becomes OðmÞ; and (iv) lastly, using (i), (ii)
and (iii) along with the fact that limt!1 nðtÞ ¼ 0 and Assumption 7, it can be shown that jjzjj
becomes OðmÞ: We previously showed that jjjjj is OðeÞ: It is clear that the set Cm;e shrinks to the
origin as m; e ! 0:

Lastly, we show that every trajectory in Cm;e approaches an invariant manifold on which the
error is zero. To do this, we first note that inside Cm;e; the closed-loop system is given by

’ww ¼ S0w

’zz ¼ f0ðz; e; n;w; yÞ

’ss ¼ Assþ Jðs�NðeÞjÞ

’zz ¼ Azzþ B1ðs� K1sÞ

’ss ¼ Dð�Þ � kja0ð�Þj
s�NðeÞj

m

� �

e ’jj ¼ Ajjþ eB2 b0ð�Þ � kja0ð�Þj
s�NðeÞj

m

� �� �

ð18Þ

Next, we claim that there exists a unique matrix M such that

SM ¼ MS and � K1M ¼ G

To see this, note that since As is Hurwitz and S has eigenvalues on the imaginary axis, the
Sylvester equation AsX � XS ¼ JG has a unique solution. That this solution satisfies SX �
XS ¼ 0 and K1X þ G ¼ 0 is shown in Reference [30]. Thus M ¼ X is the required matrix.
Defining

Mm ¼ fz ¼ 0; s ¼ %ss; e ¼ 0;j ¼ 0g

where

%ss ¼ ðm=kÞ signðLgL
r�1
f hÞMtðw; yÞ

it is easy to verify by direct substitution that Mm is an invariant manifold of (18) when n ¼ 0; for
all w 2 W : Consider the Lyapunov function candidate

V ¼ Vzzðz;w; yÞ þ l5VzðzÞ þ l6Vsð *ssÞ þ 1
2
*ss2 þ VjðjÞ ð19Þ
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where *ss ¼ s� %ss; *ss ¼ s� %ss; %ss ¼ K1 %ss; and l5; l6 are positive constants. By considering each term
in the derivative of V of (19) separately, it can be shown [29] that the derivative of V can be
arranged in the following quadratic form of P ¼ ½jjzjj jjzjj jj *ssjj j*ssj jjjjj�T

’VV4�PTPPþ l7jjPjj jjnjj ð20Þ

where l7 is a positive constant, and the symmetric matrix P has the form

P ¼

l3 �l1a �l1b �l1c �l1d

l5 �l2b �l2c �l2d

l6 �l3c �l3d

kg0

m
� l4c �l4d

1

e
� l5d

2
6666666666664

3
7777777777775

where the nonnegative constants l1d to l5d are independent of e; l1c to l4c are independent of
m; l1b and l2b are independent of l6; and l1a is independent of l5: By choosing l5; l6; m; and e; we
can successively make the principal leading minors of P positive. First l5 is chosen large enough
to make the 2� 2 minor positive, then l6 is chosen large enough to make the 3� 3 minor
positive, next m is chosen small enough to make the 4� 4 minor positive, finally e is chosen small
enough to make P positive definite. Since vðtÞ ! 0 as t ! 1; (20) can then be used to show that
every trajectory insideCm;e approachesMm as t ! 1: Our conclusions can be summarized in the
following theorem.

Theorem 1
Suppose Assumptions 1–8 are satisfied and consider the closed-loop system formed of plant (7)
and the output feedback controller (11)–(14). Suppose #eeð0Þ belongs to a compact set Q 2 Rr and
the initial states ðzð0Þ;sð0Þ; eð0ÞÞ 2 Ob; where 05b5c; and c satisfies (16) and (17). Then, there
exists mn > 0; dependent on c, and for each m 2 ð0;mn�; there exists en ¼ enðmÞ; dependent on Q,
such that for all m 2 ð0;mn� and e 2 ð0; en�; all the state variables of the closed-loop system are
bounded and limt!1 eðtÞ ¼ 0:

The estimate of the region of attraction Ob is limited only by two factors: the region of validity
of our assumptions, and the control level k: If all the assumptions hold globally and k can be
chosen arbitrarily large, the controller can achieve semi-global regulation.

We conclude this section with the following theorem on the performance of the controller,
which states that the controller recovers the performance of ideal state-feedback SMC, without
servocompensation. Consider the ideal SMC

u ¼ �k signðLgL
r�1
f hÞsgnðsÞ

s ¼
Xr�1

i¼2

kiei þ er

ð21Þ
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Theorem 2
Let X ¼ ðz; eÞ be part of the state of the closed-loop system for system (7) with the output
feedback control (11)–(14) and X n ¼ ðzn; enÞ be the state of the closed-loop system with the
state feedback control (21), with Xð0Þ ¼ X nð0Þ: Then, under the hypotheses of Theorem 1, for
every R > 0; there exists mn > 0 and for each m 2 ð0;mn�; there exists en ¼ enðmÞ; such that for all
m 2 ð0;mn� and e 2 ð0; en�; jjXðtÞ � X nðtÞjj4R 8t50:

Proof
We prove the theorem in two parts. First, we compare the trajectories under ideal SMC with
those under state feedback continuous SMC with the conditional servocompensator. Let Xy ¼
ðzy; eyÞ be part of the state of the closed-loop system under the control (8), (9) and

u ¼ �k signðLgL
r�1
f hÞsatðs=mÞ

with Xyð0Þ ¼ X nð0Þ: For this case, we show that, for sufficiently small m;XyðtÞ � X nðtÞ ¼
OðmÞ 8t50: Let sy and sn be the corresponding sliding surface functions of the two systems and

t0 ¼ minftn : jsyðtÞj4mð1þ r2Þ 8t5tng

If t0 > 0; then since jK1syðtÞj4mr2 8t; it follows that

satðsyðtÞ=mÞ ¼ sgnðsyðtÞÞ ¼ sgnðsyðtÞ � K1syðtÞÞ

8 04t4t0; which can then be used to show that XyðtÞ ¼ X nðtÞ 8 04t5t0: The result holds
trivially if t0 ¼ 0: We now consider XyðtÞ and X nðtÞ in the time interval t5t0: Since
Xyðt0Þ ¼ X nðt0Þ; we have jsyðt0Þ ¼ snðt0Þj ¼ jK1syðt0Þj4mr2: Using this, along with the fact that
jsyðtÞj and jsnðtÞj monotonically converge to the positively invariant sets fjsyj4mg and f0g;
respectively, it can be shown that jsyðtÞ � snðtÞj42mð1þ r2Þ for all t5t0: It follows that
syðtÞ � snðtÞ ¼ OðmÞ 8t50: Since the equations for zy and zn are identical stable linear
equations, driven by inputs sy � K1sy and sn; respectively, where jK1syj4mr2 and sy � sn ¼
OðmÞ; continuity of solutions on the infinite time interval [28, Theorem 9.1] can be used to show
that for sufficiently small m; zyðtÞ � znðtÞ ¼ OðmÞ and hence eyðtÞ � enðtÞ ¼ OðmÞ for all t5t0;

which can then be used to show that zyðtÞ � znðtÞ ¼ OðmÞ for all t5t0; so that the first part of the
proof follows. In particular, there exists mn > 0 such that

m 2 ð0;mn� ) jjXyðtÞ � X nðtÞjj4t=2 8t50

In the second part of the proof, we use the idea in Reference [31] to show that the trajec-
tories X of the system under output feedback approach the trajectories Xy under state
feedback as e ! 0: In particular, we show that there exists en ¼ enðmÞ such that for all e4en;
jjXðtÞ� XyðtÞjj4t=2 8t50: This is done by dividing the time interval ½0;1Þ into three sub-
intervals ½0;TðeÞ�; ½TðeÞ;T1� and ½T1;1Þ and showing that the inequality jjXðtÞ � XyðtÞjj4t=2
holds over each of these sub-intervals. From asymptotic stability of the two systems, we know
that there exists a finite time T1; independent of e; such that jjXðtÞ � XyðtÞjj4t=2 8t5T1: Also,
as mentioned earlier in this section, there is a time interval ½0;TðeÞ�; with TðeÞ ! 0 as e ! 0;
during which the fast variable j decays to an OðeÞ value. It can be shown that global
boundedness of the controls implies that over this interval, jjXðtÞ � XyðtÞjj4l0TðeÞ; for some
positive constant l0 that is independent of e: Since TðeÞ ! 0 as e ! 0; for small enough e;
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jjXðtÞ�XyðtÞjj4t=2 8t 2 ½0;TðeÞ�: Lastly, noting that XðTðeÞÞ � XyðTðeÞÞ ! 0 as e ! 0 and j is
OðeÞ; and using the continuous dependence of the solutions of differential equations on compact
time intervals [28, Theorem 3.4], one can show that it is possible to choose e to satisfy
the inequality jjXðtÞ � XyðtÞjj4t=2 over the time interval ½TðeÞ;T1�: In particular, there exists
en ¼ enðmÞ > 0 such that

e 2 ð0; en� ) jjXðtÞ � XyðtÞjj4t=2 8t50

The conclusion of Theorem 2 then follows from the triangle inequality. &

5. INTERNAL MODEL PERTURBATION

As mentioned in the concluding remarks in Section 3, our design requires that the constants c0
to cq in Assumption 5, and hence the frequencies of the exosystem, be precisely known. In
addition, as noted in the remarks following it, Assumption 5 is equivalent to requiring that the
control input, when restricted to the zero-error manifold, be a polynomial function of the
exogenous signals [14]. A violation of either of these conditions results in a perturbation of the
internal model. To make the idea precise, let

wðw; yÞ ¼ �b0ð0; 0; 0;w; yÞ=a0ð0; 0; 0;w; yÞ

and suppose %wwðw; yÞ is a nominal value of wðw; yÞ that satisfies (6). As mentioned above, there are
two sources for this perturbation. First, the frequencies of the exosystem are unknown, so that w
satisfies (6) with unknown coefficients c0 to cq; while %ww does so with nominal coefficients %cc0 to %ccq;
which are used to construct the internal model. Second, the assumption that the control input,
when restricted to the zero-error manifold, is a polynomial function of the exogenous signals,
does not hold, so that w does not satisfy (6), but an approximation %ww of it does. In this case, we
note that since any continuous function can be approximated to arbitrary accuracy on compact
sets by polynomials, a linear internal model that generates %ww can be used to approximate w
arbitrarily closely. Regardless of the source of the perturbation, using the results of Khalil [17,
Section 5], it can be shown that provided the perturbation is small, the controller of the previous
sections achieves ultimate boundedness of the tracking error, with the bound being proportional
to the size of the perturbation. In particular, let *wwðw; yÞ ¼ %wwðw; yÞ � wðw; yÞ; and suppose

j*wwðw; yÞ4jdw 8ðw; yÞ 2 W �Y

The analysis proceeds exactly as in Section 4 up to the point of showing that the trajectories
enter the set Cm;e: Using the fact that

b0ð0; 0; 0;w; yÞ ¼ � wðw; yÞaðl; p; yÞ

¼ � %wwðw; yÞaðl; p; yÞ þ *wwðw; yÞaðl;p; yÞ

it can be shown that inside the set Cm;e; when v ¼ 0; the closed-loop equation (18) can be written
as

’ww ¼ S0w

’zz ¼ f0ðz; e; 0;w; yÞ ð22Þ

’ss ¼ Assþ Jðs�NðeÞjÞ
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’zz ¼ Azzþ B1ðs� K1sÞ

’ss ¼ %DDðz; s; e;j; 0;w; yÞ þ *wwðw; yÞaðl; p; yÞ � kja0ðz;s; e; 0;w; yÞj
s�NðeÞj

m

� �

e ’jj ¼Ajjþ eB2
%bb0ðz; s; e; 0;w; yÞ

�
� kja0ð�; 0; �Þj

s�NðeÞj
m

� �
þ %wwðw; yÞaðl;p; yÞ

�

where

%DDðz; s; e;j; v;w; yÞ ¼ Dðz; s; e;j; v;w; yÞ � b0ð0; 0; 0; 0;w; yÞ � %wwðw; yÞaðl;p; yÞ

%bb0ðz;s; e; v;w; yÞ ¼ b0ðz; s; e; v;w; yÞ � b0ð0; 0; 0; 0;w; yÞ � %wwðw; yÞaðl; p; yÞ

It can be verified that system (22) has Mm as an invariant manifold when *ww ¼ 0: Equation (22)
takes the form of Reference [17, Equation (A1)], and satisfies all the assumptions of Reference
[17, Lemma 2], so that the results of Reference [17, Lemma 2] can be applied to show that (22)
has an exponentially attractive manifold %MMm that is OðdwÞ close to Mm; and on which e ¼ OðdwÞ:
The Lyapunov analysis of the final part of the proof of Theorem 1 can be repeated to show that
all trajectories inside Cm;e approach %MMm as t tends to infinity. Our results can be summarized in
the following theorem.

Theorem 3
Under the hypotheses of Theorem 1, there exists mn > 0 and for each m 2 ð0;mn�; there exists
en ¼ enðmÞ > 0 and dn

w ¼ dn
w ðmÞ > 0; such that for all dw 2 ½0; dn

w �; m 2 ð0;mn� and e 2 ð0; en�; all the
state variables of the closed-loop system are bounded and converge to an invariant manifold
where e ¼ OðdwÞ:

6. SIMULATION EXAMPLE

To show the performance improvement with the conditional servocompensator, we consider a
second-order system modelled by the equations

’xx1 ¼ x2; ’xx2 ¼ �y1ðx1 � x31=3!Þ þ y2u; y ¼ x1 ð23Þ

with the reference signal rðtÞ ¼ r0 sinðotÞ; which is generated by the exosystem

’ww ¼
0 o

�o 0

" #
w; wTð0Þ ¼ ½0; r0�; rðtÞ ¼ w1

It can easily be verified that

w ¼
1

y2
½�o2w1 þ y1ðw1 � w3

1=3!Þ�

and that w satisfies the identity Lq
sw ¼ c0wþ c1Lswþ � � � þ cq�1L

q�1
s w with q ¼ 4; c0 ¼ �9o4; c1 ¼

0; c2 ¼ �10o2 and c3 ¼ 0: We show the performance of four designs: the first is an ideal SMC,
the second is a continuous approximation that does not use a servocompensator, the third
uses the fourth-order conventional servocompensator ’ss ¼ Ssþ Je1; and the last design
uses the conditional servocompensator (13). In the first two designs, #ss ¼ k1e1 þ #ee2; while
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s ¼ K1sþ k1e1 þ #ee2 in the last two designs. For all designs except the conventional
servocompensator, the scalar k1 is chosen as any positive constant. In the conditional
servocompensator design, K1 is chosen to make ðS � JK1Þ Hurwitz. For the conventional
servocompensator, k1 and K1 are chosen to make the matrix

Ah ¼
S J

�K1 �k1

" #

Hurwitz (see Reference [17]). The estimate #ee2 is provided by the high-gain observer

’#ee#ee1 ¼ #ee2 þ g1ðe1 � #ee1Þ=e; ’#ee#ee2 ¼ g2ðe1 � #ee1Þ=e2

with g1 and g2 chosen such that the polynomial l2 þ g1lþ g2 is Hurwitz. The control is taken as
u ¼ �k satð#ss=mÞ:

We use the following numerical values in the simulation: y1 ¼ 1; y2 ¼ 3;o ¼ 0:5 rad=s; r0 ¼ 1;
k ¼ 10; m ¼ 0:1; k1 ¼ 5 in the first, second and last designs, with K1 chosen to assign the
eigenvalues of S � JK1 at �0:5;�1;�1:5 and �2: For the third design, we choose k1 and K1 to
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Design 3 : CSMC with conventional servocompensator

Design 1 : Ideal SMC
Design 2 : CSMC without servocompensator
Design 4 : CSMC with conditional servocompensator

               Design 2 
(without servocompensation) 

  Design 1 : Ideal SMC 
   and   Designs 3 and 4
(with servocompensation) 

Figure 1. Performance improvement over the conventional servocompensator design using
a conditional servocompensator.
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assign the eigenvalues of Ah at �0:5;�1;�1:5; �2 and �3: The observer parameters are chosen
as g1 ¼ 6; g2 ¼ 5 and e ¼ 0:01: The results of the simulation are shown in Figure 1, and the
improvement in the transient performance with the conditional servocompensator is clear. In
particular, the transient response of this design is close (indistinguishable in the figure) to that of
the ideal SMC design. As expected, the transient response of the CSMC design without a
servocompensator is also close to that of the ideal SMC, but does not result in asymptotic error
convergence, while the conditional servocompensator design does. Zero steady-state error is
also achieved with the third design, which employs a conventional servocompensator, but at the
expense of degraded transient performance. Equation (23) represents an approximation of the
pendulum equation. To show the effect of internal model perturbations, suppose that the system
in question is the simple pendulum, described by the equation

’xx1 ¼ x2; ’xx2 ¼ �y1 sinðx1Þ þ y2u; y ¼ x1 ð24Þ

With the control objective the same as that in the previous simulation, it can be verified that, in
the current case

w ¼
1

y2
½�o2w1 þ y1 sinðw1Þ�

so that Assumption 5 does not hold. Suppose that sinðw1Þ is approximated by the successively
higher order polynomials p1ðw1Þ ¼ w1; p2ðw1Þ ¼ w1 � w3

1=3!; and p3ðw1Þ ¼ w1 � w3
1=3!þ w5

1=5!;
respectively, to which correspond the perturbed nominal values of the steady-state control

%wwi ¼
1

y2
½�o2w1 þ y1piðw1Þ�; i ¼ 1; 2; 3

It can be verified that %ww1 satisfies (6) with q ¼ 2; c0 ¼ �o2; and c1 ¼ 0; while %ww3 does so with
q ¼ 6; c0 ¼ �225o6; c1 ¼ 0; c2 ¼ �259o4; c3 ¼ 0; c4 ¼ �35o2; and c5 ¼ 0: The constants for %ww2
are as specified in the previous simulation. We compare the performance of three conditional
servocompensator designs, of orders 2; 4; and 6, corresponding to the polynomial approxima-
tions p1ð�Þ; P2ð�Þ; and p3ð�Þ; respectively. For the servocompensator of order 2, K1 is chosen to
assign the eigenvalues of S � JK1 at �0:5 and �1; for that of order 4, at �0:5;�1;�1:5 and �2;
and for that of order 6, at �0:5;�1;�1:5;�2;�2:5 and �5: All other values are retained from
the previous simulation, except k; which is chosen as 20. The results are shown in Figure 2(a).
For comparison, we also show the performance of the conventional servocompensator design of
Khalil [17], with the eigenvalues of Ah placed as in Reference [17]. As expected from the results
of Theorem 3, for both designs, there is a reduction in the steady-state tracking error going from
the lowest order approximation to the highest. Figure 2(b) shows the transient response of the
controllers. We see that while the transient responses are almost identical for the three designs in
the case of the conditional servocompensator (indistinguishable in the figure), they become
progressively degraded as the order of the approximation increases in the case of the
conventional servocompensator design.

7. CONCLUSIONS

We have presented a new approach to the regulation of minimum-phase nonlinear systems. In
the new approach, servocompensation is provided only ‘conditionally’, i.e. inside the boundary
layer of a sliding mode control, thus effectively eliminating the transient performance
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degradation brought about by the conventional servocompensator design. Analytical results are
provided for regional and semi-global asymptotic tracking, and the improvement in
performance is shown analytically by proving that the performance of the output feedback
continuous sliding mode controller, with a conditional servocompensator, can be tuned to
recover the performance of an ideal state feedback sliding mode controller, without a
servocompensator.

We also studied the effect of internal model perturbations on the tracking error, and showed
that in the presence of perturbation, the tracking error is ultimately bounded, with a bound that
depends on the magnitude of the perturbation. In the case of such perturbations resulting from
the approximation of a continuous function by polynomials, the magnitude of the perturbation
can be made arbitrarily small, by increasing the order of the approximating polynomial.
However, doing so increases the order of the internal model, and hence the system order. While
in general, the transient response of a system becomes worse as its order increases, such is not
the case with the conditional servocompensator. In particular, our result shows that the
performance with the conditional servocompensator is always ‘close’ to that with an ideal
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Figure 2. Effect of internal model perturbation on the tracking error: (a) steady-state tracking error je1j
(absolute value); and (b) tracking error e1 during the transient period.
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sliding mode controller of fixed order, regardless of the order of the conditional
servocompensator. This shows as an advantage of the conditional servocompensator design
over the conventional one, in which the transient response becomes progressively degraded as
the order of the approximating internal model increases.

Extensions to relax the design to include an equivalent control component and allow the
coefficient of the switching component to be error and/or time dependent should be
straightforward, as should be extensions to the multi-input, multi-output case. Such extensions
are carried out in the special case of integral control in Reference [22].
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