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SUMMARY

We consider the design of a robust continuous sliding mode controller for the output regulation of a class
of minimum-phase nonlinear systems. Previous work has shown how to do this by incorporating a linear
servocompensator in the sliding mode design, but the transient performance is degraded when compared to
ideal sliding mode control. Extending previous ideas from the design of ‘conditional integrators’ for the
case of asymptotically constant references and disturbances, we design the servocompensator as a
conditional one that provides servocompensation only inside the boundary layer; achieving asymptotic
output regulation, but with improved transient performance. We give both regional as well as semi-global
results for error convergence, and show that the controller can be tuned to recover the performance of an
ideal sliding mode control. Copyright © 2005 John Wiley & Sons, Ltd.

KEY WORDS: output regulation; servomechanisms; output feedback; nonlinear systems; minimum-phase systems

1. INTRODUCTION

The output regulation problem deals with the design of a controller to make the output of a
fixed plant asymptotically track (or reject) reference (or disturbance) signals produced by an
autonomous system called the exosystem. For multivariable, time-invariant, finite-dimensional,
linear systems, an exhaustive account of the available theory can be found, for instance, in the
works of Davison [1] and Francis and Wonham [2]. Extensions to the nonlinear case have since
been studied by many researchers [3-20]. We focus our attention on Reference [17], dealing with
a robust servomechanism design for single-input single-output nonlinear systems with well-
defined normal form and asymptotically stable zero dynamics. As pointed out in Reference [17],
the three basic ingredients of the design, common to earlier results of Khalil and coworkers, are
as follows. First, by studying the dynamics of the system on the zero-error manifold, a linear
internal model is identified, which generates the trajectories of the exosystem, along with a
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84 S. SESHAGIRI AND H. K. KHALIL

number of higher-order harmonics generated by the nonlinearities of the system. A linear
servocompensator is then synthesized and augmented with the plant. Second, an output
feedback controller is designed, using the separation approach of Esfandiari and Khalil [21], of
first designing a state feedback controller, and then using a saturated high-gain observer to
recover the performance of the state feedback design. And lastly, regional or semi-global
stabilization of the augmented system, formed of the plant and the servocompensator, is
achieved through a two-step approach, where robust control is first designed to guarantee
convergence of the error to a neighbourhood of the zero-error manifold, followed by a locally
high-gain control which stabilizes this disturbance-dependent manifold. By designing this
robust, locally high-gain controller as a continuous sliding mode controller (CSMC), it is shown
in Reference [17] that the only precise knowledge that is needed in this design is the relative
degree of the plant, the sign of its high-frequency gain and the linear internal model.

In Reference [22], we presented a modification of the traditional integrator design in
Reference [23] to address the issue of performance degradation caused by the inclusion of the
integrator, specifically the issue of integrator windup. This was done by designing the integrator
as a ‘conditional’ one, which provides integral action only inside the boundary layer. In this
paper, we consider the counterpart of Seshagiri and Khalil [22] for the servomechanism design
of Khalil [17], by designing the servocompensator as a conditional one. Both regional as well as
semi-global asymptotic results are provided. We also analytically show that the controller can be
tuned to recover the performance of an ideal (discontinuous) SMC. A result regarding ultimate
boundedness of the tracking error under internal model perturbation is recalled [17], and a
simulation example is included to demonstrate the improvement in transient performance over
the ‘conventional compensator’ design of Khalil [17].

2. SYSTEM DESCRIPTION AND ASSUMPTIONS

Consider a single-input single-output nonlinear system, modelled by
X =f(x,0) + g(x, Ou + p(x,d,0)
y = h(x,0) + 7(d,0)

where x € R" is the state, u € R is the control input, y € R is the measured output, d € R’ is a
time-varying disturbance input. The functions f, g, 5, # and y depend continuously on 0, a vector
of unknown constant parameters, which belongs to a compact set ® = R’. We assume that, for
all 0 € O, the functions are sufficiently smooth on Uy, an open connected subset of R” that could
depend on 0, for all d in a compact set of interest. The functions f and y vanish at d = 0, i.e.
B(x,0,0) =0 and 9(0,0) =0 for all 6 ® and x e Uy. Our first assumption is that the
disturbance-free system has a well-defined normal form, possibly with zero dynamics.

()

Assumption 1

System (1), with d =0, has a uniform relative degree p<n for all xe Uy and 0 € O; i..
Leh(x,0) = LeLih(x,0) = -+ = LLy *h(x,0) =0 and |L,Lf 'h(x,0)|>go >0 where gy is
independent of 0. Moreover, there exists a diffeomorphism

:
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ROBUST OUTPUT REGULATION 85

of Uy onto its image that transforms (1), with d = 0, into the normal form®
n= ¢, 0)
&i=¢n, 1<i<p-1
ép = b(”la é: 9) + a(ﬂ, 5; 0)“
y==<

(©)

Assumption 2
In the presence of disturbance, the change of variables (2) transforms the system into the form’

}7 = (pa(naél" . :éerl’d’ 0)

éi:éi+l+T[(§1:"'aéi7da())a 1<l<m-1

&= +Yin, &y, .., 8,d,0), m<i<p—1 4)

5/’ = b(na 59 0) =+ a(na éa 0)1/! + lyp(rl: éa d7 0)

y=:¢ci+9(d,0)

where 1 <m<p — 1. The functions ¥; vanish at d = 0.

Examples of physical systems which are transformable into the normal form in Assumption 1,
uniformly in a compact set of system parameters, can be found, for example in Reference
[24, Section 4.10]. Geometric conditions under which a system can be transformed into the form
in Assumption 2 can be found, for example, in Reference [25].

Assumption 3
Let p, be the disturbance relative degree and p = p — p,. The disturbance and reference signals
d(t) and r(¢) have the following properties for all 1>0:

(i) d(r) and its derivatives up to the pth derivative are bounded, and d?)(¢) is piecewise
continuous;
(ii) 7(r) and its derivatives up to the pth derivative are bounded, and r¥)(¢) is piecewise
continuous;
(i) lim,n~ [2(1) — 2()] = 0 and lim,_,~ [#(1) — ¥(1)] = 0, where Z7(r) = [d(r)--- dP(1)],
(1) = [r(t) - - - FP)(1)], and 2(r) and ¥(r) are generated by the known exosystem

w = Sow

s

where Sy has distinct eigenvalues on the imaginary axis and w(¢) belongs to a compact set .

=Tow (5)

SFor p = n,  and the #-equation are dropped.
Y For m = 1, the first £-equation is dropped.
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Let D and Y be compact subsets of R#T7 and R¥*D, respectively, such that & € D and
% e Y, and d(w) and r(w) denote the steady-state values of d and r as determined by exosystem
(5). Define n1(w, 0) to m,,(w, 0) by

m =7 —(d,0)

it :?Sow—‘I’[(n],...,ni,cz,ﬂ), I<ism-—1
w

Assumption 4
There exists a unique mapping A(w, 0) that solves the partial differential equation

04 -
a—S()M} = d)a()"! T e s Tny 7Tm+l,d, 0)
w

for all w e W, where

0 m 3
Tm+1 = %SOW - lII}’I’l(}% Tyens 97T)115d9 0)

Let

o -
Tis1 :a—n'Sow—‘Pi(i,m,...,ni,dﬁ), m+1<i<p—1
W

The steady-state value of the control u on the zero-error manifold { = A(w, 0),& = n(w, )} is
given by

1 on _
) =——— | =L Sow — b(A,7,0) — ¥, (A, 7,d, 0
X(W? ) a(/l, 7, 0) aVV ow ( , 7T, ) p(/ha T, a, )
Assumption 5
There exists a set of real numbers cy, ..., c,—1, independent of 0, such that y(w, 0) satisfies the

identity
Liy=coy+erLsg+-+cg L7y (6)
for all (w,0) e W x ©, where Ly = (3y/ow)Sow and the characteristic polynomial
Pr=cgp” ==

has distinct roots on the imaginary axis.

Motivation for Assumption 5 comes from the nonlinear version of the internal model
principle, which recognizes that in the nonlinear case, the controller must be able to reproduce
not only the trajectories generated by the exosystem, but also a number of higher order
nonlinear deformations thereof, an idea that was elaborated independently in References [7-9].
Assumption 5, along with the notion of immersion [24, Chapter 8], allows the construction of a
finite-dimensional linear internal model, as we will soon show. However, before we do so, a
couple of remarks are in order. Note that, among other things, the matrix Sy in Assumption 3,
and hence the frequencies of the exosystem need to be precisely known. For the case where
the frequencies of the exosystem are unknown, an alternate design, that makes use of an
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ROBUST OUTPUT REGULATION 87

adaptive internal model whose ‘natural frequencies’ are automatically tuned to match those of
the unknown exosystem, can be found in Reference [26]. A recent result, which relaxes
Assumption 5, thereby removing the restriction that the solution of the regulator equations be a
polynomial in the exogenous signals, and allows for a nonlinear internal model, can be found
in Reference [27].

Defining
o 1 0 7 s
o o0 1 - 0 Ly
S = , T=
0O --- --- 0 1 L?JX
_CO Cq—l_ _L?_]X_

and '=[1 0 --- 0];,,, it can be shown that y(w, 0) is generated by the internal model
ot(w, 0)
ow

Sow = St(w, 0)

1w, 0) = T'z(w, 0)

To tackle the tracking problem, we apply the change of variables z=#n— A(w,0) and
ei =y — D 1<i<p and V(1) =[27(1) — 27(1), ¥ (1) — #T(1)], and note that v(r)
belongs to a compact set A and lim,_,, v(f) = 0. With this change of variables, system (4) can
be rewritten as

Z = @y(z,e,v,w,0)
éi=eir1, I<i<p—1
é, = bo(z,e,v,w,0) + ap(z,e,v,w, O)u @
Ym = €1
where y,, is the measured tracking error. The functions ¢(:), ao(-) and bo(-) satisfy
$0(0,0,0,w,0) =0

a0(0,0,0,w,0) = a(Z(w, 0), n(w, 0), 0)

bO(Os 0’ Oa w, 0) = _X(Wa H)CZ(A.(W, 0)’ n(wi 0)5 0)

In the new variables, the zero-error manifold is given by {z =0,e¢ = 0}. Since we do not
necessarily require our assumptions to hold globally, we need to restrict our analysis in the (z, e)
variables to a region that maps back into the domain Uy. The following assumption states such a
restriction.

Assumption 6
There exist positive constants r; and r,, independent of (v,w, ), such that for all (v,w,0) e
A X W x 0, |le]|<r; and ||z||<r = x € U,.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2005; 15:83—-102



88 S. SESHAGIRI AND H. K. KHALIL

Define the balls & = {ee€ R? : |le|]|<r;} and & = {ze€ R"? :|z]|<r,}. Since A is compact,
there exists r3 > 0 such that ||v||<r3 for all v € A. Therefore, ||(eT, vT)||<r, + r3 for all e € & and
v e A. We will design the control u to regulate the error e to zero and then rely on a minimum-
phase-like assumption, stated below, to guarantee boundedness of z. The assumption states that
with (e, vT) as the driving input, the system 2z = ¢(z, e, v, w,0) is input-to-state stable over a
certain region [28, Theorem 4.19], which implies that with (eT,v") = 0, the equilibrium point
z =0 is asymptotically stable. This is strengthened in Assumption 8 to requiring that this
equilibrium point be locally exponentially stable.

Assumption 7
There exist a C! proper function V. : % x W — R, possibly dependent on 0, and class
functions «; : [0,r;) > R (i=1,2,3) and 0 : [0, + r3) = R., independent of (w, 0), such that

ar(llzl) < Va(z, w, 0) <ax(llzI])

ov. z

oz ow
for all |jz||=6(I(eT, vDID, ll(eT,vDll<ri +r3 and (z,w,0) e & x W x ©. Furthermore,
8(r3) <oy (a1 (r2)).!

bo(z,,v,w,0) + ——Sow< — a3(|Iz]])

Assumption 8
There exists a Lyapunov function V..(z,w,0), defined in some neighbourhood of z = 0, and
positive constants 4; to A4, independent of (w, 0), such that

Mzl < Veelz, w, 0) < a2

oV oV
2 b0(2,0,0,,0) + == Sow< — Js e’
V..
H = ’ alll

3. CONTROL DESIGN

Our design of the conditional servocompensator follows very close to that of the conditional
integrator in Reference [22]. Basically, it involves modifying the servocompensator

6=So+Je,, J'=]0,...,0,1]

in Reference [17] to make it ‘active’ only inside the boundary layer. Assume for the present that
the state e is available for feedback. To simplify the notation in what is to come, we define
e le1 e --- ep—1]and Kr =[k; ko --- k,_i]. In the absence of the servocompensator, one

ISS analysis on a finite region requires (see Reference [28, Theorem 4.18]) 3(sup,soll(eT(0), vI(@)I) <oz 121 (r2)). Since
[|[v]| <rs3, Assumption 7 requires that (3(r3)<ac2’](oc|(rz))‘ Later on in the analysis, a restriction is placed on |le|| (see (16)).
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ROBUST OUTPUT REGULATION 89

could take the sliding surface as s = K»>{ + ¢,, with K> chosen such that the polynomial pLaLE
kp,l/lpfz 4 -4+ kol + k; is Hurwitz. This guarantees that when motion is confined to the
manifold s =0, the error e; converges to zero asymptotically. Servocompensation is then
introduced by modifying the sliding surface to

S=K16+K2§+€p )
where o is the output of the conditional servocompensator
¢ = (S — JK)o + pJ sat(s/u) 9)

with u > 0 being the width of the boundary layer and K; chosen such that S — JK; is Hurwitz,
which is always possible since the pair (S,J) is controllable. Equation (9) represents a
perturbation of the exponentially stable system &6 = (S — JKj)s, with the norm of the
perturbation bounded by the small parameter p. Inside the boundary layer, i.e. when |s|<g,
Equation (9) reduces to

o= So+ Je, (10)

where the ‘augumented error’ e, = K»{ + ¢, is a linear combination of the tracking error and its
derivatives up to order p — 1. Equation (10) coincides with the servocompensator of Khalil [17]
only in the case when p = 1.

Since the state e is unavailable for feedback, we use the following linear high-gain observer to
robustly estimate the derivatives of e;:

6 =éi +giler —é1)/e!, 1<i<p—1
(11)

ép = gp(el - él)/gp

where ¢ > 0 is a design parameter to be specified, and the positive constants gy, ..., g, are chosen
such that the polynomial 2* + g;2*~' +--- + g, |+ g, is Hurwitz. We replace s by its estimate
S, given by

p—1

§=Kio+kier+ > kiéi+¢, (12)
i=2
where o is the output of
6= (S —JK)o + nJ sat($/p) (13)
The control is taken as
u= —ksign(LgLy™ " h)sat(3/p) (14)

To complete the design, we need to specify the design parameters k,  and &. The constant & is an
upper bound on the control u. Since in typical applications the control has to satisfy magnitude
constraints, we can simply choose k to be the maximum permissible control magnitude. The
parameters u and ¢ should be chosen sufficiently small. In particular, we show in the next section
that there exists u* > 0, and for each p € (0, u*), there is an ¥ = ¢*(u) > 0 such that asymptotic
tracking is achieved for each 0 <p<u® and 0 <e<e*. The only precise knowledge about the
plant that is required to calculate and implement control (14) is its relative degree p, the sign of
its high-frequency gain LgLfflh, and the characteristic polynomial of Assumption 5.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2005; 15:83—-102
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4. ANALYSIS

We write the closed-loop system in the singularly perturbed form
w = Sow
z = ¢y(z,e,v,w,0)
¢ = A0+ pJ sat((s — N(e)p)/p)
{ = AL+ Bi(s — Ky0)
§ = A() — klao(-)] sat((s — N(e)g)/p)
ep = App + eBalbo () — klao(")| sat((s — N(e)p)/w]

(15)

where
0 1 0
0 0 1 0
A =
0 0 1
ki —ky ... ... —kyq ]
_7g1 1 0_ _O_
0 1 0 0
A(p: > Bl:
0
0 1
1
=g 0 ... ... 0] o
A() = bo() + K1 A,0 + pKiJ sat((s — N(e)p) /1) + Kafez e3 -+ e,]"
N(e) = [0 koe? kse? ™ - ke 1]
def

Ay, = S — JKi, and the scaled estimation ¢ is given by

1 . )
p;=—= (e —¢&), 1<i<p
Pt

The current analysis shares many points in common with the ones in References [17, 22], so we
only outline the idea, taking care to highlight the differences. The main difference between the
current analysis and that in Reference [17] is treating ¢ and { separately in the current work,
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ROBUST OUTPUT REGULATION 91

while in Reference [17], they are lumped together in one vector. The four main steps in the
analysis, common to Reference [17] and the current work, are as follows:

Step 1: Using appropriate Lyapunov functions for each of the last five components of (15),
define a compact set Q. x X, and show that this set is a positively invariant set of the closed-loop
system for a suitable choice of controller parameters. This is done by showing that the derivative
of the Lyapunov functions are negative on the Lyapunov surfaces that form the boundaries of
this set.

Step 2: Show that for any bounded é(0), and any (z(0), e(0), 0(0)) € Qp, where 0<b<c, it is
possible to choose ¢ such that the trajectory enters the set Q. x X, in finite time.

Step 3: Show that for a suitable choice of u and ¢, all trajectories starting inside Q, x X,
eventually enter into a ‘small’ positively invariant set ‘¥, . that shrinks to the origin as p and ¢
tend to zero.

Step 4: Show that for a suitable choice of u and ¢, every trajectory in ¥, ; approaches an
invariant manifold on which the error is zero.

Noting that A;, A,, and A, are Hurwitz, we define the Lyapunov functions
Ve(0) def CTPCC, V(@) def (pTP(p(p and V(o) def o' P,o

where the symmetric positive definite matrices Py, P,, and P, are the solutions of

PA;+ Al P =—1

T
PyA,+ AyP, = —1
and
P,A, + AP, = —1

respectively. Given a positive constant ¢ > u, define the compact set Q. by

def
Q.= {(z,e,0) : IsI<e, Vo(o)<iPpy, V(0

<(c+ upy)ps. Valt,z,d)<ou(cpy +13)}

where p;, p,, p3, and p, are positive constants, independent of ¢, to be specified shortly and a4 is
a class " function defined in terms of the functions o, and ¢ of Assumption 7 by oy = a300. Our
analysis will be restricted to trajectories starting inside a product set of which Q. is a component.
Therefore, in view of Assumption 6, Q. will have to be chosen to ensure that (z, e, o) € Q. implies
that (z,e) € Z x &. Using

1
e= K3(+ By(s — Kj0), K3=

— 42

it can be verified that inside Q., |le||<psc, where p, = (14 p))||Ksll\/(03/2min(Py) + 1 +
1K1/ (01 /Amin(Ps). Using this, along with Assumption 7, it can be shown that choosing ¢ to
satisfy

cpy<min{ry, oy (i (r2) = r3} (16)

guarantees that (z,e) € Z x & for all (z,e,0) € Q..

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2005; 15:83—-102
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Define the compact set X, by
d f
= {o : Volp)<&ps}

where ps is a positive constant to be specified shortly. We wish to show that for a suitable choice
of the controller parameters, the set Q. x X, is a positively invariant set of the closed-loop
system (15). Using the inequality

— lloll + 2ullall1 P, |

it is easy to show that ¥, <0 on the boundary V, = up, for the choice p, = 4||P, J|P hmax(Po).

Inside the set Q. |lol|<ur/p1/ min(Ps) ,up2/||K1|| Using this, along with [s|<¢, and the
inequality

Ve = IEIP -+ 210 1PeBall (sl + 1Kl

it is easy to show that V;<0 on the boundary ng(c+,up2)2p3, for the choice p; =
4||PgBl||2)Lmax(PC). Next we evaluate s§ on the boundary |s| = ¢. To that end, let ¢ be small
enough that |N(e)p|<c — u, so that

st (ﬂ) — sen (ﬂ) — sgn(s)
1 I

and hence $$<IAQ Is] = klao()l I
Choosing k and c¢ to satisfy”
k=pes+71(c) (17)

where pg >0 and y,(c) = max |A(-)|/|ao(+)|, with the maximization taken over all (z, e, o) €Q,,
veA,we W, and 0 € ©, we have s§ <0 on the boundary |s| = ¢. Assumption 7 shows that V', <0
on the boundary V. = as(cp, + r3). Finally, using the inequality

. 1
Vo< — - ||</>||2 + 2l 1Py Baly2(c)

where 7,(c) = max |by(-) — klao(-)|sat((s — N (s)qo)/ )|, with the max1mlzat10n taken over the
same set as that for y,(c), it follows that V <0 on the boundary V,, = &?ps for the choice
s> 4P, Bl /Z(C)Amdx(P(p) It follows that the set Q. X X, is posmvely invariant.

Our next step is to show that for any bounded é(0), and any (z(0), ¢(0), a(0)) € Qp, where
0<b<ec, it is possible to choose ¢ such that the trajectory enters the set Q. x X, in finite time.
Using the fact that for (z, e, o) € Q,, the right-hand side of the slow equation of (15) is bounded
uniformly in ¢, if follows that for all (z(0), e(0), a(0)) € Q,, there is a finite time T}, independent
of & such that for all 0<t< Ty, (2(2), e(?), 6(t)) € Q.. During this interval, using the definition of
ps, we have

Vo< —pellel® for Vo(p)=eps
for some p; > 0. This inequality can be used to show that ¢(¢) enters X, within a time interval

[0, T'(¢)], where lim,_, T'(¢) = 0. Therefore, by choosing ¢ small enough we can ensure that 7'(¢) < Ty.

" Inequality (17) can be viewed in two ways. Given ¢ > 0, it is a constraint on the minimum value k. Alternatively, given
k, it is a constraint on the estimate of the region of attraction.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2005; 15:83—-102
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The argument that Q. x X, is positively invariant can be extended to show that, for
sufﬁcief:ntly small &, all trajectories starting inside it reach the positively invariant set
kI = Q, x X in finite time, where

def

Q.= {(z,0,0) 1 sI< (1 = do), Vo(@) < ppy,

V(O < ps, Vot 2, d) <ouipo) b

where 0<0y<pg/(4k)<1/4, ¢ is small enough that |N(e)p|<udy, and pg, py are positive
constants independent of u. The details of showing that the trajectories reach ‘¥, in finite time
can be found in Reference [29]. The idea can be explained roughly as follows; note that Q, has
four components; (i) the standard sliding mode analysis tells us that the component |s| becomes
O(p) in finite time, (ii) from our previous analysis ||a|| is always O(u), (iii) using (i) and (ii) along
with the { equation of (15), it can be shown that ||{|| becomes O(u), and (iv) lastly, using (i), (ii)
and (ii1) along with the fact that lim,_, v(#) = 0 and Assumption 7, it can be shown that ||z]|
becomes O(u). We previously showed that ||| is O(e). It is clear that the set ¥, shrinks to the
origin as p,& — 0.

Lastly, we show that every trajectory in ¥, approaches an invariant manifold on which the
error is zero. To do this, we first note that inside ¥, the closed-loop system is given by

w = Sow

Z = ¢olz,e,v,w,0)

6 = Ags0+ J(s — N(e)p)

{ = AL+ Bi(s— Kjo) (18)

=40 - Kant(*=327)

o0 = Ao + 85 1) — k)= )|

Next, we claim that there exists a unique matrix M such that
SM=MS and —-KM=T

To see this, note that since A4, is Hurwitz and S has eigenvalues on the imaginary axis, the
Sylvester equation A,X — XS = JI' has a unique solution. That this solution satisfies SX —
XS =0 and K;X +T =0 is shown in Reference [30]. Thus M = X is the required matrix.
Defining

My ={z=0,0=6,e=0,¢0 =0}
where
G = (u/k) sign(LgLy™ " h)M(w,0)

it is easy to verify by direct substitution that .#,, is an invariant manifold of (18) when v = 0, for
all w e W. Consider the Lyapunov function candidate

V= Vea(z,w,0) + A5V () + 26Vo(6) + 3 3 + V(o) 19)

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2005; 15:83—-102



94 S. SESHAGIRI AND H. K. KHALIL

where 6 =6 — 6,3 =5 — 5,5 = K|6, and 1s, ¢ are positive constants. By considering each term
in the derivative of ¥ of (19) separately, it can be shown [29] that the derivative of V" can be
arranged in the following quadratic form of IT = [||z|| ||| 11611 5] llell]"

V< — 7210 + |11 |Iv| (20)

where 17 is a positive constant, and the symmetric matrix £ has the form

3 —Aa —A —Ale —Ja |
As =l —A2¢ — A2
) A6 —3e —/3d
7= kgo

——= — J4¢  —Add
u

o
— — Asq
&

where the nonnegative constants A, to 4s; are independent of &; 4, to A4, are independent of
w; A1p and Ay, are independent of Jg; and 4y, is independent of 4s. By choosing /s, 46, i, and &, we
can successively make the principal leading minors of 2 positive. First 15 is chosen large enough
to make the 2 x 2 minor positive, then g is chosen large enough to make the 3 x 3 minor
positive, next u is chosen small enough to make the 4 x 4 minor positive, finally ¢ is chosen small
enough to make £ positive definite. Since v(f) — 0 as t — 00, (20) can then be used to show that
every trajectory inside ‘¥, approaches .#, as t — 0o. Our conclusions can be summarized in the
following theorem.

Theorem 1

Suppose Assumptions 1-8 are satisfied and consider the closed-loop system formed of plant (7)
and the output feedback controller (11)—(14). Suppose é(0) belongs to a compact set Q € R” and
the initial states (z(0), 6(0), e(0)) € Q,, where 0 <b< ¢, and ¢ satisfies (16) and (17). Then, there
exists u* > 0, dependent on ¢, and for each u € (0, u*], there exists ¢* = £¢*(u), dependent on Q,
such that for all u e (0, u*] and ¢ € (0,&*], all the state variables of the closed-loop system are
bounded and lim,_,, e(r) = 0.

The estimate of the region of attraction Q, is limited only by two factors: the region of validity
of our assumptions, and the control level k. If all the assumptions hold globally and & can be
chosen arbitrarily large, the controller can achieve semi-global regulation.

We conclude this section with the following theorem on the performance of the controller,
which states that the controller recovers the performance of ideal state-feedback SMC, without
servocompensation. Consider the ideal SMC

u=—ksign(Lg Ly~ h)sgn(s)

—1 (21)
s = kiei + e,

)

Il
S}
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Theorem 2

Let X = (z,e) be part of the state of the closed-loop system for system (7) with the output
feedback control (11)—(14) and X* = (z*,¢™¥) be the state of the closed-loop system with the
state feedback control (21), with X(0) = X *(0). Then, under the hypotheses of Theorem 1, for
every o > 0, there exists u* > 0 and for each u € (0, u*], there exists ¢* = £*(u), such that for all
we (0,u*] and ¢ € (0,™], || X(£) — X*(9)|| <o Vt=0.

Proof

We prove the theorem in two parts. First, we compare the trajectories under ideal SMC with
those under state feedback continuous SMC with the conditional servocompensator. Let X T =
(zT,eT) be part of the state of the closed-loop system under the control (8), (9) and

u=—ksign(Lg Ly~ hysat(s/p)

with XT(O) = X*(0). For this case, we show that, for sufficiently small p, XT(Z) —X*1) =
O(n) Ve=0. Let st and s* be the corresponding sliding surface functions of the two systems and

to = min{r* : |sT () <p(l + py) Vr=1%)
If 7o > 0, then since |K O'T(t)| <up, Vi, it follows that

sat(sT(1) /1) = sen(sT (1)) = sensT () — KioT (1))

YV 0<t<ty, which can then be used to show that XT(I) = X*(#) YV 0<t<ty. The result holds
trivially if 70 =0. We now consider X T(t) and X*(f) in the time interval ¢>1#,. Since
XT(to) = X*(ty), we have |s (o) = s*(t)| = |Kq O'T(l())| < up,. Using this, along with the fact that
IST(t)I and |s*(f)] monotonically converge to the positively invariant sets {Ier|<u} and {0},
respectwely, it can be shown that |sT(t)—s*(t)|<2u(1 + p,) for all t=1. It follows that
s (t) — s*(t) = O(u) Vt=0. Since the equatlons for (! and ¢* are identical stable linear
equations, driven by inputs s! — K107L and s*, respectively, where |K107L|<,up2 and st — 5% =
O(p), continuity of solutions on the infinite time interval [28, Theorem 9.1] can be used to show
that for sufficiently small g, CT(I) — *(#) = O(u) and hence eT(t) —e*(t) = O(p) for all t=1,
which can then be used to show that ZT([) — z*(t) = O(u) for all > 1y, so that the first part of the
proof follows. In particular, there exists u* > 0 such that

we 0, 1% = 11X - X*ll<e/2 ¥i=0

In the second part of the proof, we use the idea in Reference [31] to show that the trajec-
tories X of the system under output feedback approach the trajectories X' under state
feedback as ¢ — 0. In particular, we show that there exists ¢* = ¢*(u) such that for all e<e*,

[| X (£)— XT(t)||<r/2 Vt>=0. This is done by dividing the time interval [0, c0) into three sub-
intervals [0, T'(¢)],[T(¢), T1] and [T}, 0c0) and showing that the inequality || X(¢) — XT(t)||<‘c/2
holds over each of these sub-intervals. From asymptotic stability of the two systems, we know
that there exists a finite time 77, independent of ¢, such that || X (¢) — x¥ OII<t/2 Ye=T). Also,
as mentioned earlier in this section, there is a time interval [0, 7'(¢)], with T(¢) — 0 as ¢ - 0,
during which the fast variable ¢ decays to an O(g) value. It can be shown that global
boundedness of the controls implies that over this interval, ||[X(f) — X T(t)||<20 T(e), for some
positive constant /o that is independent of e. Since T'(¢) —» 0 as ¢ — 0, for small enough e,
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IX()—XT ()| <t/2 Vi €[0, T(e)]. Lastly, noting that X(T(¢)) — X T(T(e)) > 0 as e — 0 and ¢ is
O(e), and using the continuous dependence of the solutions of differential equations on compact
time intervals [28, Theorem 3.4], one can show that it is possible to choose ¢ to satisfy
the inequality || X (1) — X T(t)||<7: /2 over the time interval [T(¢), T)]. In particular, there exists
e* = &*(u) > 0 such that

ee(0,6% = IX() — XT(ll<t/2 viz0

The conclusion of Theorem 2 then follows from the triangle inequality. O

5. INTERNAL MODEL PERTURBATION

As mentioned in the concluding remarks in Section 3, our design requires that the constants ¢
to ¢, in Assumption 5, and hence the frequencies of the exosystem, be precisely known. In
addition, as noted in the remarks following it, Assumption 5 is equivalent to requiring that the
control input, when restricted to the zero-error manifold, be a polynomial function of the
exogenous signals [14]. A violation of either of these conditions results in a perturbation of the
internal model. To make the idea precise, let

1(w, 0) = —bo(0,0,0,w,0)/ay(0,0,0,w,0)

and suppose j(w, 0) is a nominal value of y(w, 0) that satisfies (6). As mentioned above, there are
two sources for this perturbation. First, the frequencies of the exosystem are unknown, so that y
satisfies (6) with unknown coefficients ¢y to ¢,, while  does so with nominal coefficients ¢y to ¢,
which are used to construct the internal model. Second, the assumption that the control input,
when restricted to the zero-error manifold, is a polynomial function of the exogenous signals,
does not hold, so that y does not satisfy (6), but an approximation y of it does. In this case, we
note that since any continuous function can be approximated to arbitrary accuracy on compact
sets by polynomials, a linear internal model that generates y can be used to approximate y
arbitrarily closely. Regardless of the source of the perturbation, using the results of Khalil [17,
Section 5], it can be shown that provided the perturbation is small, the controller of the previous
sections achieves ultimate boundedness of the tracking error, with the bound being proportional
to the size of the perturbation. In particular, let j(w, 0) = x(w, 0) — y(w, 0), and suppose

[7(w, 0)< |6, Y(w,0) e W x ©

The analysis proceeds exactly as in Section 4 up to the point of showing that the trajectories
enter the set ¥, ;. Using the fact that

bo(0,0,0,w,60) = — y(w,0)a(l, =, 0)
= — q(w, a4, m,0) + j(w, Oa(A, r, 0)

it can be shown that inside the set ¥, ., when v = 0, the closed-loop equation (18) can be written
as

w = Sow
zZ = ¢ol(z,e,0,w,0) (22)

6= A0+ J(s— N(¢)p)
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{ = AL+ Bi(s — K10)

_ « N
§= A, 0., 0,0, 0) + 700, 0)a(is 7,0) — Klao(z, 0, ¢, 0, w, 0) (ﬂ)
I

60 = Ay@ + 6B | Bo(z, 0, ¢, 0,0, 0) — Klao(-, O, )|( M( )"’> +;z<w,0>au,n,0>}

where
Az, 0,e,0,v,w,0) = Az, 0, e, ¢, v, w,0) — by(0,0,0,0,w,0) — 7(w, 0)a(2,,0)

bo(z, 0, e,v,w,0) = by(z, 0, e, v, w,0) — by(0,0,0,0,w,0) — 7(w, O)a(4,, 0)

It can be verified that system (22) has .#,, as an invariant manifold when § = 0. Equation (22)
takes the form of Reference [17, Equation (A1)], and satisfies all the assumptions of Reference
[17, Lemma 2], so that the results of Reference [17, Lemma 2] can be applied to show that (22)
has an exponentially attractive manifold ./# « that is O(6,) close to .#,, and on which e = O(J,).
The Lyapunov analysis of the final part of the proof of Theorem 1 can be repeated to show that
all trajectories inside ‘¥, approach M . as t tends to infinity. Our results can be summarized in
the following theorem.

Theorem 3

Under the hypotheses of Theorem 1, there exists u* >0 and for each p e (0, u*), there exists
=¢*(u)>0and 5* = 5*(u) >0, such that for all §, € [0,5 1, ne(0,u*]and ¢ € (0,¢*], all the

state variables of the closed loop system are bounded and converge to an invariant manifold

where e = 0(9,).

6. SIMULATION EXAMPLE

To show the performance improvement with the conditional servocompensator, we consider a
second-order system modelled by the equations

X1 =x2, Xo=—0i(x; —x1/3) + 0, y=x (23)

with the reference signal r(f) = ro sin(wt), which is generated by the exosystem

—

0 o -
W= 0 w, w (0)=1[0,r0], r(t)=w
It can easily be verified that
1
¥ = 0—[—032w1 + 01(wy — wi /3]
2
and that y satisfies the identity Ly = coy + ciLsy + -+ + cq_ng‘l;{ with g =4,¢c) = —90*,¢; =
0,c; = —10w? and ¢3 = 0. We show the performance of four designs: the first is an ideal SMC,
the second is a continuous approximation that does not use a servocompensator, the third

uses the fourth-order conventional servocompensator ¢ = So + Je;, and the last design
uses the conditional servocompensator (13). In the first two designs, § = kje; + é,, while
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s=Kjo+ kie; +é in the last two designs. For all designs except the conventional
servocompensator, the scalar k; is chosen as any positive constant. In the conditional
servocompensator design, K; is chosen to make (S — JK;) Hurwitz. For the conventional
servocompensator, k; and K; are chosen to make the matrix

S J

oAy =
K -k

Hurwitz (see Reference [17]). The estimate é, is provided by the high-gain observer
e =6 +giler —é/e, & =ger —é1)/e

with g; and g, chosen such that the polynomial 2? + g4 + g is Hurwitz. The control is taken as
u= —ksat(s/p).

We use the following numerical values in the simulation: 8; = 1,0, = 3,0 = 0.5rad/s, ro = 1,
k=10, n=0.1, k; =5 in the first, second and last designs, with K; chosen to assign the
eigenvalues of S — JK; at —0.5, —1, —1.5 and —2. For the third design, we choose k; and K; to

Performance improvement with conditional servocompensator design
0.4 T T T T T T T T T

0.2 ( o Design 3 : CSMC with conventional servocompensator

RSN ‘ : . |

Design 1 : Ideal SMC

1
13
)
of ! =
1
1
II
I
: Design 2 : CSMC without servocompensator i

Tracking error e (transient)

04}
Design 4 : CSMC with conditional servocompensator
06 : i
0.8 i
_1 1 1 1 1 1 1 1 1 1
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Figure 1. Performance improvement over the conventional servocompensator design using
a conditional servocompensator.
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assign the eigenvalues of .7, at —0.5, —1, —1.5, —2 and —3. The observer parameters are chosen
as gy =6, go =5 and ¢ = 0.01. The results of the simulation are shown in Figure 1, and the
improvement in the transient performance with the conditional servocompensator is clear. In
particular, the transient response of this design is close (indistinguishable in the figure) to that of
the ideal SMC design. As expected, the transient response of the CSMC design without a
servocompensator is also close to that of the ideal SMC, but does not result in asymptotic error
convergence, while the conditional servocompensator design does. Zero steady-state error is
also achieved with the third design, which employs a conventional servocompensator, but at the
expense of degraded transient performance. Equation (23) represents an approximation of the
pendulum equation. To show the effect of internal model perturbations, suppose that the system
in question is the simple pendulum, described by the equation

X1 = X2, Xp=—0rsin(x)+ 0, y=x (24)

With the control objective the same as that in the previous simulation, it can be verified that, in
the current case

L= i [fa)zwl + 0y sin(w)]
0,

so that Assumption 5 does not hold. Suppose that sin(w;) is approximated by the successively
higher order polynomials p;(wi) = wi, pa(wi) = wi — wi/3\, and p3(wi) = wy — w3 /3! + w3 /5!,
respectively, to which correspond the perturbed nominal values of the steady-state control

1
i = 0—[—co2w1 +0ipiw)], i=1,23
2

It can be verified that 7, satisfies (6) with ¢ = 2, ¢y = —®?, and ¢; = 0, while 3 does so with
g=06,c0=—-2250°% c; =0,y = —2590*, c3 = 0, ¢4, = —35w?, and ¢5 = 0. The constants for i,
are as specified in the previous simulation. We compare the performance of three conditional
servocompensator designs, of orders 2,4, and 6, corresponding to the polynomial approxima-
tions pi(+), P2(-), and ps(-), respectively. For the servocompensator of order 2, K; is chosen to
assign the eigenvalues of S — JK| at —0.5 and —1, for that of order 4, at —0.5, —1,—1.5 and —2,
and for that of order 6, at —0.5, —1, —1.5, -2, —2.5 and —5. All other values are retained from
the previous simulation, except k, which is chosen as 20. The results are shown in Figure 2(a).
For comparison, we also show the performance of the conventional servocompensator design of
Khalil [17], with the eigenvalues of o7, placed as in Reference [17]. As expected from the results
of Theorem 3, for both designs, there is a reduction in the steady-state tracking error going from
the lowest order approximation to the highest. Figure 2(b) shows the transient response of the
controllers. We see that while the transient responses are almost identical for the three designs in
the case of the conditional servocompensator (indistinguishable in the figure), they become
progressively degraded as the order of the approximation increases in the case of the
conventional servocompensator design.

7. CONCLUSIONS
We have presented a new approach to the regulation of minimum-phase nonlinear systems. In
the new approach, servocompensation is provided only ‘conditionally’, i.e. inside the boundary

layer of a sliding mode control, thus effectively eliminating the transient performance
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Figure 2. Effect of internal model perturbation on the tracking error: (a) steady-state tracking error |e;]
(absolute value); and (b) tracking error e; during the transient period.

degradation brought about by the conventional servocompensator design. Analytical results are
provided for regional and semi-global asymptotic tracking, and the improvement in
performance is shown analytically by proving that the performance of the output feedback
continuous sliding mode controller, with a conditional servocompensator, can be tuned to
recover the performance of an ideal state feedback sliding mode controller, without a
servocompensator.

We also studied the effect of internal model perturbations on the tracking error, and showed
that in the presence of perturbation, the tracking error is ultimately bounded, with a bound that
depends on the magnitude of the perturbation. In the case of such perturbations resulting from
the approximation of a continuous function by polynomials, the magnitude of the perturbation
can be made arbitrarily small, by increasing the order of the approximating polynomial.
However, doing so increases the order of the internal model, and hence the system order. While
in general, the transient response of a system becomes worse as its order increases, such is not
the case with the conditional servocompensator. In particular, our result shows that the
performance with the conditional servocompensator is always ‘close’ to that with an ideal
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sliding mode controller of fixed order, regardless of the order of the conditional
servocompensator. This shows as an advantage of the conditional servocompensator design
over the conventional one, in which the transient response becomes progressively degraded as
the order of the approximating internal model increases.

Extensions to relax the design to include an equivalent control component and allow the
coefficient of the switching component to be error and/or time dependent should be
straightforward, as should be extensions to the multi-input, multi-output case. Such extensions
are carried out in the special case of integral control in Reference [22].
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