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Abstract: The application of the ‘conditional servocompensator’ technique to position control of a permanent
magnet stepper motor is studied. This is a recent approach to the output regulation of minimum-phase non-
linear systems that results in better transient performance over ‘conventional’ servocompensator-based
design. Global regulation results are provided for state-feedback control and semi-global results under output
feedback, with regional results when the control is constrained. The simulation results show that good
tracking performance is achieved, in spite of partial knowledge of the machine parameters.
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1 Introduction
Permanent magnet stepper motors (PMSM) have become a
popular alternative to the traditionally used brushed DC
motors (BDCM) for many high performance motion
control applications for several reasons: better reliability
because of the elimination of mechanical brushes, better
heat dissipation as there are no rotor windings, higher
torque-to-inertia ratio because of a lighter rotor, lower price
and easy interfacing with digital systems [1]. They are now
widely used in numerous motion control applications such
as robotics, printers, process control systems and so on.
Some of the drawbacks of PM machines when operated in
open loop are the occurrence of large overshoots and
settling times, especially when the load inertia is high, and
the fact that microstepping is not possible in the open-loop
mode of operation. As a result, over the years, many
control algorithms that can improve the performance of
PMSMs in a closed-loop operation have been examined.

Zribi and Chiasson [2] used the technique of exact feedback
linearisation using full state-feedback, with extensions to the
partial state-feedback case in [3, 4], and experimental
validation of the controller in [3]. Adaptive solutions to the
problem, under varying assumptions on the measurable states
and on what parameters in the system are partially or wholly
known, have appeared, for example, in the works of Dawson
and co-workers [1, 5], Khorrami and co-workers [6–9] and
others [10]. A sliding mode controller (SMC) along with
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implementation results was reported in Zribi et al. [11]. In
order to avoid the chattering problem associated with the
‘static’ discontinuous SMC, a ‘dynamic’ or ‘second-order’
SMC was proposed, where the discontinuities were relegated
to the derivatives of the control input.

We present a new approach to position control based on a
recently proposed technique for the output regulation of
minimum-phase non-linear systems [12, 13], which
incorporates a servocompensator as part of a robust SMC
design. The servocompensation is ‘conditional’ in the sense
that it behaves like a servocompensator only inside the
boundary layer. This is shown to improve the transient
performance over conventional servocompensator design.
The method applies to MIMO non-linear systems with
well-defined relative degree, which are transformable to
normal form uniformly in a compact set of unknown
parameters, and minimum phase. The design guarantees
global regulation under state-feedback semi-global
regulation under output-feedback and regional regulation
with constrained control, under slightly differing
assumptions. The performance of the design is comparable
to ideal (discontinuous) SMC, but does not suffer from the
drawback of chattering. In the special case of constant
exogenous signals, the conditional servocompensator can be
simplified to specially tuned PI/PID controllers with an
anti-windup structure (see [12, Section 6]) for relative
degree one and two systems respectively. Preliminary results
were presented in our earlier work [14].
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The rest of this paper is organised as follows. The system
model is presented in Section 2, and Section 3 deals with
conditional integrator design for the case of
(asymptotically) constant exogenous signals, with the
design done for both the state and output-feedback cases.
An extension to the case of sinusoidal reference signals
using conditional servocompensators is presented in Section
4, and conclusions are presented in Section 5. The specific
contribution of this work over [14] are the results of
Section 4.1, dealing with internal model perturbations, and
the advantages of the proposed (conditional
servocompensator) approach over a conventional approach
in handling such perturbations.

2 System model
A schematic of a PMSM that has a slotted stator with two
phases, and a PM rotor is shown in Fig. 1.

The mathematical model of the PMSM is given below [2,
3, 11]

dia

dt
¼

1

L
(va �Ria þKmv sin (Nrf))

dib

dt
¼

1

L
(vb�RibþKmv cos (Nrf))

dv

dt
¼

1

J
(Kmib cos (Nrf)�Kmia sin (Nrf)�Bv� tL)

df

dt
¼ v

9>>>>>>>>>>>=
>>>>>>>>>>>;

(1)

where ia is the current in winding A, ib is the current in
winding B, f is the angular displacement of the shaft of
the motor, v is the angular velocity of the shaft of the
motor, va is the voltage across winding A, vb is the voltage
across winding B, Nr is the number of rotor teeth, J is the
rotor and load inertia, B is the viscous friction coefficient,

Figure 1 Schematic of a two-phase PMSM
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L and R are the inductance and resistance, respectively, of
the phase windings, Km is the motor torque (back-emf)
constant, and tL is the load torque. The model neglects the
slight magnetic coupling between the phases, the small
change in inductance as a function of the rotor position,
the detent torque [6], and the variation in inductance
because of magnetic saturation. The DQ transformation [2]
from the fixed axes variables (xa, xb) to the dq axes variables
(xd , xq), defined by

xd

xq

� �
¼
def cos(Nrf) sin(Nrf)
�sin(Nrf) cos(Nrf)

� �
xa

xb

� �

changes the frame of reference from the fixed phase axes to
axes that are moving with the rotor. The direct current id

corresponds to the component of the stator magnetic field
along the axis of the rotor magnetic field, whereas the
quadrature current iq corresponds to the orthogonal
component. Defining the states, inputs and outputs as

x1 ¼ id , x2 ¼ iq, x3 ¼ v, x4 ¼ f, u1 ¼ vd ,

u2 ¼ vq, y1 ¼ id , and y2 ¼ f

it can be verified that (1) can be rewritten in the form of the
following state model for the PMSM

_x1 ¼�k1x1þ k5x2x3þ k6u1

_x2 ¼�k1x2� k5x1x3� k2x3þ k6u2

_x3 ¼ k3x2� k4x3� d0

_x4 ¼ x3

y1 ¼ x1

y2 ¼ x4

(2)

where the constants k1–k6 and d0 are related to Nr, J, B, L, R,
Km and tL by

k1 ¼
R

L
, k2 ¼

Km

L
, k3 ¼

Km

J
, k4 ¼

B

J
, k5 ¼Nr,

k6 ¼
1

L
and d0 ¼

tL

J

3 Conditional integrator design
We consider the case of asymptotically constant exogenous
signals, that is, it is desired that the rotor angular position
and direct-axis current track given references fd(t) and
Idd (t) that tends to constant values as t ! 1 [11]. It can
be verified that the system (2) has full vector relative degree
r ¼ {1, 3}, globally in R4. In ideal sliding mode control, a
choice of sliding surface functions would have been

s1 ¼ e1, e1 ¼
def

y1 � Idd ,

s2 ¼ k2
1e2 þ k2

2 _e2þ €e2 , e2 ¼
def

y2 � fd

(3)
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with k2
1 and k2

2 chosen such that the polynomial

l2
þ k2

2lþ k2
1

is Hurwitz, and the control designed to force the trajectories
to reach the surfaces si ¼ 0 in finite time and remain on them
thereafter. However, as is well known, this method suffers
from the drawback of chattering, and can excite
unmodelled high-frequency dynamics and degrade system
performance. Replacing the discontinuous (ideal) control by
a continuous approximation in a boundary layer of the
sliding surface reduces chattering but at the expense of a
finite steady-state error. Asymptotic regulation can be
recovered in the continuous sliding mode control (CSMC)
by augmenting a conventional integrator

_si ¼ ei

as part of the sliding surface but (i) requires a redesign of the
sliding surface parameters and (ii) degrades transient
performance in comparison to ideal SMC, in part because
of the increase in system order as a result of the integrator,
and in part because of the interaction of the integrator with
control saturation, which leads to the well known problem
of windup. In [12], we presented a ‘conditional integrator’
design that introduces integral action conditionally, that is,
only inside the boundary layer, thereby recovering
asymptotic regulation of ideal SMC, while not degrading
its transient performance. The design in [12] was presented
for a general MIMO non-linear system, modelled by

_x ¼ f (x, u)þ
Xm

i¼1

gi(x, u)[ui þ di(x, u, w)]

yi ¼ hi(x, u), 1 � i � m

with state x [ Rn, input u [ Rm, output y [ Rm, u a vector
of unknown constant parameters belonging to the compact
set Q , Rp, w(t) a piecewise continuous exogenous signal
belonging to a compact set W , Rq, f (�) and gi(�) smooth
vector fields, and piecewise continuous disturbances di(�).
In the rest of this section, we directly present the design in
[12] for the PMSM model (2).

3.1 State-feedback design

In order to recover the asymptotic regulation of ideal SMC
and also retain its transient performance, we modify the
sliding surfaces (3) as follows

s1 ¼ k1
0s1 þ e1

s2 ¼ k2
0s2 þ k2

1e2 þ k2
2 _e2þ €e2

(4)

where s1 and s2 are the outputs of the conditional
98
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integrators

_s1 ¼ �k1
0s1 þ m1sat(s1=m1), s1(0) [ [�m1=k1

0, m1=k1
0]

_s2 ¼ �k2
0s2 þ m2sat(s2=m2), s2(0) [ [�m2=k2

0, m2=k2
0]

(5)

k1
0, k2

0 . 0, the values of k2
1 and k2

2 are retained from the ideal
SMC design (3), and m1, m2 are ‘sufficiently small’ positive
constants representing the widths of the boundary layers for
s1 and s2, respectively. To see the relation of (5) to integral
control, observe that inside the boundary layer {jsij � mi},
(5) reduces to

_s1 ¼ e1

_s2 ¼ k2
1e2 þ k2

2 _e2þ €e2

which implies that ei ¼ 0 at equilibrium. Thus, (5) represents
a ‘conditional integrator’ that provides integral action only
inside the boundary layer.

Since

€e2 ¼ k3x2 � k4x3 � d0 � f(2)
d

is required to construct s2, the parameters k3, k4 and d0 will
need to be known. We assume that k1, k2 and k6 are
unknown, corresponding to uncertainties in resistance R
and inductance L of the phase windings, whereas k5, being
the number of rotor teeth, is precisely known. Let

u ¼ [u1, u2, u3]T
¼ [k1, k2, k6]T

denote the vector of unknown parameters. It can be verified
that the expressions for _si take the form

_s1 ¼ k1
0(�k1

0s1 þ m1sat(s1=m1))

þ F1(x, e1, I (1)
dd , u)þ a11(x, u)u1

_s2 ¼ k2
0(�k2

0s2 þ m2sat(s2=m2))

þ F2(x, e2, _e2, €e2, f(3)
d , u)þ a22(x, u)u2

where

F1(�) ¼ �u1x1 þ k5x2x3 � I (1)
dd

F2(�) ¼ k2
1 _e2þk2

2 €e2�f
(3)
d � k4(k3x2 � k4x3 � d0)� k3u1x2

� k3 k5x1x3 � k3u2x3

and a11(�) ¼ u3, a22(�) ¼ k3u3.

The control u is taken as

ui ¼
� F̂ i (x, e, 4)� bi(x, e, 4)sat(si=mi)

âii

, i ¼ 1, 2 (6)
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where

eT
¼ [e1, e2, _e2, €e2], 4T

¼ [I (1)
dd , f

(3)
d ], â11(�) ¼ û 3,

and â22(�) ¼ k3û 3

û 3 . 0 being a nominal value of u3. To facilitate the
discussion, we choose the ‘nominal control component’
F̂ i (�) to cancel all known/nominal terms in Fi(�), that is

F̂ 1(�) ¼ �û 1x1 þ k5x2x3 � I (1)
dd

F̂ 2(�) ¼ k2
1_e2 þ k2

2€e2 � f
(3)
d � k4(k3x2 � k4x3 � d0)� k3û 1x2

� k3 k5x1x3 � k3û 2x3

where û 1 . 0 and û 2 . 0 are nominal values of u1 and u2,
respectively. However, note that other choices of F̂ i(�),
including F̂ i(�) ¼ 0, are possible.

To make the choice of bi(�) precise, suppose that

ui [ [um
i , uM

i ], where 0 , um
i , uM

i and um
i and uM

i are
known. Let

Di(�) ¼ Fi(�)� (u3=û 3) F̂ i(�)

and ri(x, e, 4) be such that

sup
û 3 Di(�)

u3

�����
����� � @i(x, e, 4), i ¼ 1, 2

where the supremum is taken over all x, e [ R4, ui [
[um

i , uM
i ] and 4 [ R2. The functions bi are then chosen as

bi(�) ¼ @i(�)þ qi, qi . 0

This choice guarantees that

si _si , �qi

whenever jsij . mi , so that the trajectories reach the sets
si � mi in finite time, and stay there thereafter. A standard
SMC argument can then be used to prove that the
controller (4)–(6) achieves global regulation, provided m1

and m2 are sufficiently small. In particular, we have
the following result. The proof of this theorem for a
general MIMO system, stated as [15, Theorem 3.1] and
[16, Theorem 2], can be found in either of these two
references.

Theorem 1 (Boundedness and error regulation): For
any bounded initial state x(0) of the PMSM model (2), the
state x(t) of the closed-loop system under the state-
feedback control (4)–(6) is bounded for all t � 0.
Moreover, there exists m�i . 0, such that, for mi [ (0, m�i ],
limt!1 e(t) ¼ 0.
Control Theory Appl., 2009, Vol. 3, Iss. 9, pp. 1196–1208
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A simplification of the design results if we make the choice
F̂ i (�) ¼ 0, bi(�) ¼ ki, with the constants ki chosen such that

max
û 3Fi(�)

u3

�����
����� , ki , i ¼ 1, 2

where the maximisation is taken over all x, e and 4 in some
compact subsets of R4 and R2, respectively, and
ui [ [um

i , uM
i ]. In this case, the controller is simply

ui ¼
�ki

âii

� �
sat(si=mi) ¼

def
�Misat(si=mi), i ¼ 1, 2

This design, while having a simple structure, is also natural
if the control is required to be bounded, as is the case in
real applications, and is a design choice that we will also
pursue in the section on output feedback, but for a
different reason. For this case, we only have regional
results, with the region of attraction determined by
constraints on the choice of ki. If the gains ki can be
chosen sufficiently large, we can achieve semi-
global stabilisation. Both these results, along with the
global result we mentioned earlier, are covered in
[16, Theorem 2].

For the purpose of simulation, we use the following values
for the system parameters, obtained from [11]:
R ¼ 19:1388V, L ¼ 40 mH, Km ¼ 0:1349 Nm=A, J ¼
4:1295� 10 kgm2, B ¼ 0:0013 Nm=rad=s and Nr ¼ 50.
The load torque is assumed to be tL ¼ 0:2 kgm2=s2. For
the purpose of controller design, R and L are assumed
to be unknown, with nominal values of R̂ ¼ 20V and
L̂ ¼ 35 mH, respectively. Also, R [ [Rm, RM ], with Rm

¼

19V, and RM
¼ 21V, and L [ [Lm, LM ], with Lm

¼

30 mH, and LM
¼ 40 mH. The current reference is taken

as Idd (t) ¼ 0 A [17]. The values of the controller parameters
are taken as k1

0 ¼ 20, k2
0 ¼ 100, k2

1 ¼ 7:5� 104, k2
2 ¼ 550,

m1 ¼ 0:1, and m2 ¼ 50. Initial values for all the states are
taken as zero. The functions bi(�) are taken as

b1(�) ¼ [(RM
� R̂)jx1j þ (LM

� L̂)Nr jx2x3j þ q1]=L̂,

q1 ¼ 2:1 k1
0m1LM

b2(�) ¼ [(RM
� R̂)k3jx2j þ (LM

� L̂)jk2
1_e2 þ k2

2€e2

� k4(k3x2 � k4x3 � d0)� k3 k5x1x3j þ q2]=L̂,

q2 ¼ 2:1 k2
0m2LM

The desired angular position fd(t) ¼ 0:03142[u(t)þ
u(t � 0:5)], where u(t) is the unit step function. The
results of the simulation are shown in Fig. 2. From the
figure, it is clear that good tracking performance with very
little overshoot is achieved, independent of the magnitude of
fd(t).
1199
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Figure 2 Tracking error performance under state-feedback integral control
In the absence of integral control, it is well known that
decreasing the width m of the boundary layer results in
performance that is ‘close’ to that of ideal SMC. The above
simulation suggests that this is true with integral control as
well, provided the conditional integrator is used. In particular,
one can show that the continuous SMC design with
conditional integrators ‘recovers the performance’ of the
corresponding ideal (discontinuous) SMC without integral
control

s1 ¼ e1

s2 ¼ k2
1e2 þ k2

2 _e2þ €e2

ui ¼
�F̂ i (x, e, 4)� bi(x, e, 4) sgn(si)

âii

, i ¼ 1, 2 (7)

so that we have the following result. As with Theorem 1, this
theorem has been stated as [15, Theorem 3.2] and [16,
Theorem 3], and the proof of the theorem can be found in
either of these references.

Theorem 2 (Performance recovery of ideal SMC): Let
x�(t) be the state of the closed-loop system under the ideal
SMC control (7) and x(t) be part of the state of the
closed-loop system under the continuous SMC (4)–(6).
Then, under the hypotheses of Theorem 1, given any
compact subset S of R4, with x�(0) ¼ x(0) [ S, there exists
00
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m�i . 0, such that, mi [ (0, m�i ]) kx�(t)� x(t)k ¼ O(kmk)
8 t � 0, where m ¼ [m1, m2]T.

As noted in [12, 15, 16], the state-feedback CSMC with
conditional integrators can be thought of as the following
two-step modification to ideal SMC:

1. Take si ¼ s�i þ ki
0si , where s�i ¼ 0 is the sliding surface

under ideal SMC, and si is the state of the conditional
integrator si ¼ �ki

0si þ misat(si=mi), mi, ki
0 . 0 and mi

‘sufficiently small’.

2. Replace sgn(s�i ) in ideal SMC with sat(si=mi).

Such a design then recovers the performance of ideal
SMC, as stated in Theorem 2. In light of this observation,
it becomes imperative to explain the advantage of the
proposed technique over ideal SMC. In our design, as a
result of inclusion of integral control, we do not require the
boundary layer widths m1 and m2 to be arbitrarily small in
order to achieve asymptotic regulation, but only ‘small
enough’ to stabilise the equilibrium point (and also small
enough for performance recovery of ideal SMC).
Consequently, we expect that the method will be less
sensitive to the problem of chattering. As a demonstration
of this statement, consider a sampled-data implementation
of the above controller, that is, we assume that the inputs
to the controller are sampled and held signals, with a
IET Control Theory Appl., 2009, Vol. 3, Iss. 9, pp. 1196–1208
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zero-order hold, and likewise for the controller outputs. We
redo the previous simulation and compare the results against
ideal SMC. To simplify the simulation, we exploit the
flexibility in the choice of F̂ i(�)and bi(�), and simply design
the control as ui ¼ �Mi sgn(si). For the purposes of
simulation, we let M1 ¼ 50, M2 ¼ 500, and the sampling
period is assumed to be T ¼ 0:1 ms. The results are shown
in Fig. 3 (only error e2 is plotted, since it corresponds to
the variable f of physical interest), and we see that
asymptotic regulation is lost with the ideal SMC with the
sampled-data implementation, and there is considerable
chattering in the control vq. By contrast, asymptotic
regulation is retained with the CSMC with conditional
integrator, and there is no chattering in the control.

3.2 Output feedback

Suppose that the angular velocity v of the motor shaft is
unavailable for feedback. It is easy to verify that for the
system to have a uniform vector relative degree and be
transformable to normal form, none of the positive
constants ki and d0 need to be exactly known. Accordingly,
we will assume that in the present case, in addition to the
resistance R and inductance L, the parameters Km, B, J and
the load torque tL are all unknown, and take the vector u

of unknown parameters as

u ¼ [k1, k2, k3, k4, k6, d0]T

Since v is unavailable for feedback, so is _e2 ¼ v� _fd .
Furthermore, even if v were available for feedback,
since €e2 ¼ k3iq � k4v� d0 � f2

d , and k3, k4 and d0 are
unknown, €e2 would be unavailable for feedback. Therefore,
we estimate _e2 and €e2 in (4) using the high-gain observer
Control Theory Appl., 2009, Vol. 3, Iss. 9, pp. 1196–1208
i: 10.1049/iet-cta.2008.0243
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(HGO) [18]

_z1 ¼ z2 þ a1(e2 � z1)=e

_z2 ¼ z3 þ a2(e2 � z1)=e2

_z3 ¼ a3(e2 � z1)=e3

(8)

where the positive constants a1, a2 and a3 are chosen such
that the polynomial l3

þ a1l
2
þ a2lþ a3 is Hurwitz. We

replace _e2, €e2 and also s2 in (5) by their estimates z2, z3, and

ŝ2 ¼ k2
0s2 þ k2

1e2 þ k2
2z2 þ z3 (9)

respectively. Finally, motivated in part by the goal of
simplifying the design, and in part by the need to work
with saturated controls (this is required in order to prevent
the peaking phenomenon associated with HGOs [18]), and
as mentioned in the previous subsection, we make use of
the flexibility in choosing F̂ i , and let F̂ i ¼ 0, and simply
choose bi(�) as a constant Mi , which is equal to the
maximum physically allowable value for the control
component juij. One can also modify the more general
controller (6) for the output-feedback case, without the
preceding simplification (10). This essentially requires
saturating the control (6) outside a compact set of interest,
and the details can be found, for example, in [12, Section
4.2]. With this choice, the final expression for the control
then becomes

u1 ¼ �M1sat(s1=m1)

u2 ¼ �M2sat(ŝ2=m2)
(10)

The results of [12, Theorem 1] show that provided m1, m2

and e are ‘sufficiently small’, and M1, M2 can be chosen
‘sufficiently large’, the controller (10) can achieve semi-
global regulation. Moreover, when M1 and M2 are limited
Figure 3 Effect of sampled-time implementation on ideal SMC and CSMC with conditional integrator
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in magnitude, there is a trade-off between the control
magnitude and the region of attraction. A performance
recovery result similar to Theorem 2, which says that the
output-feedback CSMC controller with integral action (10)
recovers the performance of a corresponding state-feedback
ideal SMC, can be found in [12, Theorem 2]. Although a
precise statement for the regional case is harder to state
without additional terminology (but can be found in [12]),
we can state the corresponding results for semi-global
regulation and performance recovery, and do so below.

Theorem 3 (Stability and performance): Consider the
closed-loop system consisting of the PMSM model (2) and
the output-feedback control (4), (5), (8)–(10), and suppose
the controller gains Mi can be chosen arbitrarily large.
Given compact sets M , R4, and N , R3 with e(0) [ M
and z(0) [ N , there exist m�i . 0, such that for each
m ¼ [m1, m2]T with mi � m�i , there exists e� ¼ e�(m) . 0,
such that, for e � e�, all state variables of the closed-loop
system are bounded, and limt!1 e(t) ¼ 0. Furthermore, if
x�(t) be part of the state of the closed-loop system under
the ideal state-feedback SMC ui ¼ �Mi sgn(s�i ), and x(t)
that with the output-feedback continuous SMC with
conditional integrators, with x(0) ¼ x�(0), then, for every
t . 0, there exists m� . 0, and for each m with
kmk1 [ (0, m�], there exists e� ¼ e�(m) . 0, such that, for
mi [ (0, m�] and e [ (0, e�], kx(t)� x�(t)k � t 8 t � 0.

For the purpose of simulation, we let Km, J, B,
Nr, tL, k1

0, k2
0, k2

1, k2
2, m1, m2 and Idd retain their values from

the previous simulation. Also we take R ¼ 19:5V,
L ¼ 30 mH, and fd ¼ 0:03142 rad . The HGO gains
are taken as a1 ¼ 17, a2 ¼ 80 and a3 ¼ 100, and the
saturation levels for the controls as M1 ¼ 50, M2 ¼ 500.
We compare the performance of the output-feedback
controller with the partial state-feedback design
02
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ui ¼ �Misat(si=mi), which makes use of measurements of
e1, e2, _e2 and €e2. This could, for instance, be the case when
the full state x is available for feedback and the parameters
k3, k4 and d0 are known. Fig. 4a shows the results of the
simulation for e ¼ 10�4, and we see that good tracking
performance is achieved by the output-feedback controller,
which uses minimal information about the system. Fig. 4b
shows the effect of e on the recovery of the state-feedback
performance, and it is clear from the figure that the error e2

under output-feedback approaches the error e2 under state-
feedback as e tends to zero.

4 Conditional servocompensator
design
The integral control designs of the previous section was done
with the goal of point-to-point motion of the PMSM.
In many positioning applications, the desired trajectory
for the position is a sinusoid [1]. Specifically, suppose
that the desired trajectory asymptotically converges to
fd (t) ¼ r0 sin(v0t), which is generated by the neutrally
stable exosystem

_w ¼
0 v0

�v0 0

� �
w ¼

def
S0w, wT(0) ¼ [0, r0], r(t) ¼ w1

More general reference trajectories can be considered, as long
as they satisfy the conditions of [13, Assumption 3]. We
show that the conditional servocompensator design of [13],
which is a natural extension of the conditional integrator
design of [12], can be applied to this case. Before we
proceed further on the control design, we explain the key
points briefly. First, by studying the dynamics of the system
on the zero-error manifold, a linear internal model is
identified, which generates the trajectories of the exosystem,
along with a number of higher-order harmonics generated
Figure 4 Tracking error performance under the output-feedback integral control

a State/output feedback integral control
b Performance recovery of sfb as 1 tends to zero
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by the non-linearities of the system. As before, the idea is to
replace ideal discontinuous SMC with a continuous version,
but to augment a servocompensator as part of the sliding
surface, so as to recover the asymptotic error convergence of
ideal SMC. As with the conditional integrator design, the
goal is to introduce the servocompensator conditionally,
only inside the boundary layer. The reason to do so is as
before, namely that a conventional servocompensator
design, while guaranteeing steady-state error convergence,
does so at the expense of transient performance, while the
conditional servocompensator design retains the transient
performance of ideal SMC.

To continue with the design, our first goal is to identify a
suitable linear internal model that generates the steady-state
values of the control inputs vd and vq. As before, the
desired reference for the current id is a constant Idd . It can
be verified that with steady-state values x1ss(t) ¼ Idd and
x4ss(t) ¼ r0 sin (v0t), respectively, for x1 and x4, the steady-
state values of x2 and x3 are given by

x2ss ¼ [d0 þ k4r0v0 cos(v0t)� r0v
2
0 sin(v0t)]=k3

and x3ss ¼ r0v0 cos(v0t)

respectively, and the steady-state values of the control inputs
vd and vq are given by

u1ss ¼ g1 þ g2 cos(v0t)þ g3 sin(2v0t)þ g4 cos(2v0t)

u2ss ¼ g5 þ g6 sin(v0t)þ g7 cos(v0t)

for some constants g1 to g7. The steady-state values of the
control uiss satisfy identities of the form

Lq
s x ¼ c0xþ c1Lsxþ � � � þ cq�1Lq�1

s x (11)

where Lsx ¼ (@x=@w)S0w, and the (characteristic)
polynomial

lq
� cq�1l

q�1
� � � � � c0

has distinct roots on the imaginary axis. In particular, u1ss

does so with q ¼ 5, c0 ¼ 0, c1 ¼ �4v4
0, c2 ¼ 0, c3 ¼ �5v2

0

and c4 ¼ 0, whereas u2ss does so with q ¼ 3, c0 ¼ 0,
c1 ¼ �v

2
0 and c2 ¼ 0. An explanation of the identity (11)

can be found in the paragraph following [13, Assumption
5]. Roughly speaking, it guarantees the existence of a linear
internal model that generates the trajectories of the
exosystem, along with a number of higher-order
deformations that result from the plant non-linearities. Let

S1 ¼

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 �4v4
0 0 �5v2

0 0

2
6666664

3
7777775

, S2 ¼

0 1 0

0 0 1

0 �v2
0 0

2
64

3
75
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be the internal model matrices corresponding to u1ss and u2ss,
and

J1 ¼ [ 0 0 0 0 1 ]T, J2 ¼ [ 0 0 1 ]T

It can be verified that the steady-state control inputs uiss ¼

xi are generated by the internal models (@ti=@w)S0w ¼ Siti,
xi ¼ Giti, where t ¼ [xiLsxi � � �L

q�2
s xiL

q�1
s xi]

T, and Gi ¼

[10 � � � 0]1�q. We take s1 and s2 as outputs of the
conditional servocompensators

_si ¼ (Si � JiK
i
0)si þ mi Ji sat(ŝi=mi) (12)

where

s1 ¼ K 1
0 s1 þ e1

s2 ¼ K 2
0 s2 þ k2

1e2 þ k2
2_e2 þ €e2

(13)

The matrices K i
0 are chosen such that Si � JiK

i
0 are Hurwitz

(which is always possible since the pair (Si, Ji) is controllable),
the scalars k2

1 and k2
2 are chosen such that the polynomial

x2
þ k2

2xþ k2
1 is Hurwitz, ŝ1 ¼ s1, ŝ2 ¼ K 2

0 s2 þ k2
1e2þ

k2
2z2 þ z3, where z2 and z3 are estimates of _e2 and €e2,

respectively, provided by the high-gain observer (8).

As with the conditional integrator design, (12) represents a
perturbation of the exponentially stable system
_s ¼ (S � JK0)s, with the norm of the perturbation
bounded by the small parameter m, and therefore
ksik ¼ O(mi), provided si(0) ¼ O(mi). With state
feedback, (i.e. when ŝ ¼ s) inside the boundary layer
jsj � m, (12) reduces to _s ¼ Ssþ Jea, where the
‘augmented error’ ea is alinear combination of the tracking
error and its derivatives, and it is clear that it generates the
steady-state trajectories when ea ¼ 0, that is, provides
servo-action inside the boundary layer.

To continue with the design, the control then is taken as in
(10), that is

ui ¼ �Mi sat(ŝi=mi) (14)

As before, we can choose the nominal component of the
control to be non-zero, and possibly error dependent, and
also choose the ‘switching’ component as state/error
dependent. We do not pursue that design here for the sake
of simplicity. This completes the design of the controller.
Analytical results for stability and performance of the
controller (12)–(14), similar to the ones in the previous
section, can be found in [13, Theorems 1 and 2], and are
stated in Theorem 3 below for the special semi-global
regulation case.
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Theorem 4 (Stability and performance): Consider the
closed-loop system consisting of the PMSM model (2) and
the output-feedback control (12)–(14), and suppose the
controller gains Mi can be chosen arbitrarily large. Given
compact sets M , R4, and N , R3 with e(0) [ M and
z(0) [ N , there exist m�i . 0, such that for each
m ¼ [m1, m2]T with mi � m�i , there exists e� ¼ e�(m) . 0,
such that, for e � e�, all state variables of the closed-loop
system are bounded, and limt!1 e(t) ¼ 0. Furthermore, if
x�(t) be part of the state of the closed-loop system under the
ideal state-feedback SMC ui ¼ �Mi sgn(s�i ), and x(t) that
with the output-feedback continuous SMC with conditional
servocompensators (12), with x(0) ¼ x�(0), and si(0) ¼ 0.
Then, for every t . 0, there exists m� . 0, and for each m

with kmk1 [ (0, m�], there exists e� ¼ e�(m) . 0, such that,
for mi [ (0, m�] and e [ (0, e�], kx(t)� x�(t)k � t8 t � 0.

In order to demonstrate the efficacy of the design by
simulation, we repeat the simulation in Section 3.2, with all
the numerical values retained, except for the reference fd(t),
which is now chosen as fd(t) ¼ r0 cos(v0t). This is a
sinusoidal signal that is simply phase-shifted from
fd (t) ¼ r0 sin(v0t) by p=2, and chosen this way to have a
non-zero initial error e2(0). Two sets of values of (r0, v0) are
used in the simulation, (r0, v0) ¼ (p=2, 2) and
(r0, v0) ¼ (p=10, 5). The matrices K i

0 in the conditional
servocompensator (12) are chosen to place the eigenvalues of
S1 � J1K 1

0 and S2 � J2K 2
0 at {�1, �2 + j, �3 + j} and

{�1, �2 + j}, respectively. We compare the performance
against a continuous SMC design that does not include a
servocompensator, that is, ŝ1 ¼ e1, ŝ2 ¼ k2

1e2 þ k2
2z2 þ z3,

where z2 and z3 are as defined above, and
ui ¼ �Mi sat(ŝi=mi). The results of the simulation are shown
in Fig. 5, and we see that good tracking performance is
achieved by the output-feedback servocompensator design,
which uses minimal information about the system. As
expected, the transient performance of the continuous SMC
without servocompensator is close to the one with a
servocompensator (indistinguishable in the figure), but the
steady-state error is non-zero without servocompensation,
whereas it tends to zero with the conditional servocompensator.

In our simulations so far, we have assumed that the load
torque tL is constant. This assumption can be relaxed: (i) for
the constant exogenous signals case, since we only require
that tL be asymptotically constant, and f(t) and v(t)
approach a constant and zero, respectively, we can allow
tL ¼ ft(f(t), v(t)), where ft(�) is a sufficiently smooth
function of its arguments, and (ii) for the sinusoidal
exogenous signals case, on account of the need for the
identity of the form (11) that the steady-state control
must satisfy, it can be verified that ft(�) will have to be a
polynomial function of its inputs, and that its form must be
known, that is

ft(f, v) ¼
X

i[I , j[J

aijf
iv j

where I , J , Z�0 known, and aij possibly unknown.
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4.1 Internal model perturbations

In the sinusoidal exogenous signals case, when the
polynomial condition is violated, for example, when the
load torque is of the form tL ¼ N sin(f) say, then, as
shown in [13, Section 5], polynomial approximations may
be used toachieve practical regulation of the error.
Successively higher-order approximations will lead to better
approximations that make the steady-state error smaller (see
[13, Theorem 3] for a precise statement about the effect of
‘size’ of internal model perturbations on the steady-state
error), but will require successively higher-order
servocompensator designs. Ideal SMC does not require
such approximations, but suffers from chattering. Replacing
the discontinuous control with a continuous approximation
that does not include a servocompensator will result in
steady-state errors that are O(m), so that we need to make
m smaller in order to decrease the steady-state error, but a
too small m will lead to chattering again. The error can be
made smaller by incorporating a servocompensator that is
based on polynomial approximations. However, when a
conventional servocompensator driven by the tracking error
of the form

_si ¼ Sisi þ Jiei

is used, then, as previously mentioned, although successively
higher-order approximations will result in smaller steady-
state errors, this will be at the expense of degraded
transient performance, which becomes progressively worse
as the order of the approximation increases. The transient
response of the conditional servocompensator design, on
the other hand, is practically independent of the
servocompensator order, and, as shown by Theorem 4, is
simply close to an ideal SMC design that does not include
a servocompensator.

In order to illustrate the above observations, we repeat the
previous simulation, but with the following changes: we
assume that the load torque is tL ¼ N sin(f), where (as in
[8]) N ¼ 1.7201 kg m2/s2, and the desired reference
trajectory is, as before, fd (t) ¼ r0 cos(v0t) with r0 ¼ 1,
v0 ¼ 2. It is easy to verify that the steady-state values of
the control inputs vd and vq are given by

u1ss ¼ g8 þ g9 sin(2v0t)þ g10 cos(2v0t)þ g11 cos(v0t)

� sin( sin(v0t))

u2ss ¼ g12 sin(v0t)þ g13 cos(v0t)þ g14 sin( sin(v0t))

þ g15 cos(v0t) cos( sin(v0t))

for some constants g8 to g15, and it can be verified that these
do not satisfy identities of the form (11). Consequently, we
replace sin(sin(v0t)) and cos( sin(v0t)) (that appear in the
terms with constant coefficients g11, g14 and g15) with
polynomial approximations. In particular, viewing sin(v0t)
IET Control Theory Appl., 2009, Vol. 3, Iss. 9, pp. 1196–1208
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Figure 5 Sinusoidal reference tracking using output-feedback servocompensators
as the argument q of sin(q) and cos(q), we employ the
following two approximations:

1. Approximation 1: sin(q) ’ q, cos(q) ’ 1

2. Approximation 2: sin(q) ’ q� q3=3, cos(q) ’ 1�q2=2

It is then straightforward to verify that that the internal
model matrices Si corresponding to these two
approximations then are:

Approximation 1

S1 ¼

0 1 0
0 0 1
0 �4v2

0 0

2
4

3
5, S2 ¼

0 1
�v2

0 0

� �
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Approximation 2

S1 ¼

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 �64v4
0 0 �20v2

0 0

2
6666664

3
7777775

,

S2 ¼

0 1 0 0

0 0 1 0

0 0 0 1

�9v4
0 0 �10v2

0 0

2
6664

3
7775

For the first (lower-order) approximation, the matrices K i
0 in

the conditional servocompensator design are chosen to place
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the eigenvalues of S1 � J1K 1
0 and S2 � J2K 2

0 at {�1, �2 + j}
and {�1, �2}, respectively. For the second (higher-order)
approximation, these are chosen to place the eigenvalues
of S1 � J1K 1

0 and S2 � J2K 2
0 at {�1, �2 + j, �5 + j}

and {�2 + j, �5 + j}, respectively. The conventional
servocompensator design requires a complete redesign
of the sliding surface parameters (the details of which can
be found in [19]), and we only mention that in order to
make a meaningful comparison, the controller parameters
in the simulation results that we present were chosen so
that the eigenvalues from the conditional design are
retained.

The results of the simulation are shown in Fig. 6, with
variables q1 and q2 indicated being the orders of matrices
S1 and S2, respectively. The set q1 ¼ 3, q2 ¼ 2 corresponds
to the lower-order polynomial approximation, whereas
q1 ¼ 5, q2 ¼ 4 to the higher-order one. Several inferences
can be made from the figure. The subplots in the first row
show that the steady-state errors decrease as the polynomial
approximation order increases (i.e. the approximation
06
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becomes better), both for the conditional and for the
conventional servocompensator design. Furthermore, the
steady-state errors for the same approximation order are
comparable in both these designs. From the subplots on
the second row, we see, as expected, that the transient
performance of the conditional servocompensator designs is
close to that of the continuous SMC without
servocompensator (indistinguishable in the figure) and
hence to that of an ideal SMC, regardless of the order of
the servocompensator (which are shown with q2 ¼ 2 and
q2 ¼ 4). In other words, increase in servocompensator
order does not degrade the transient performance of the
design. The steady-state error is non-zero without
servocompensation, whereas it deceases (significantly) with
the servocompensator (shown for q2 ¼ 2). The subplot on
the last row clearly demonstrates the advantage of the
conditional design over a conventional one. In particular,
while the steady-state performance of the two designs are
comparable (as seen from the subplots in the first row),
increasing the order of the servocompensator in order to
decrease the steady-state error has the drawback of
Figure 6 Effect of increasing approximation orders on transient and steady-state performance
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degrading the transient response in the conventional
design, which clearly gets progressively worse as the
servocompensator order increases. The conditional
servocompensator design’s transient performance though, as
we have just observed, is practically independent of the
servocompensator order.

5 Conclusions
In this paper, we presented a new approach for position
control of a permanent magnet stepper motor. Our
problem formulation allows for the system to contain
constant unknown parameters u, and time-varying matched
disturbances d(t) that could also possibly depend on u and
the state x. In the case of constant exogenous signals, we
looked at both a state-feedback design for global regulation,
and an output-feedback design for regional/semi-global
regulation, based on conditional integrators and sliding
mode control. An extension of the design to the case of
sinusoidal references using conditional servocompensators
was provided, with both state- and output-feedback designs
being possible. Analytical results for stability and
performance of the proposed method were provided, with
the performance of ideal SMC as the benchmark.
Simulation results show that good tracking performance is
achieved in all cases, in spite of partial knowledge of the
machine parameters. Advantages of the design over ideal
SMC as regards the issue of chattering and over
conventional servocompensator design as regards transient
performance were also demonstrated by simulation.
Lastly, although we specifically considered PMSMs in
this paper, our results can be extended to other types of
motors, such as permanent magnet synchronous and DC
motors.
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