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Output Feedback Control of Nonlinear Systems
Using RBF Neural Networks

Sridhar Seshagiri and Hassan K. Khalil, Fellow, IEEE

Abstract—An adaptive output feedback control scheme for the
output tracking of a class of continuous-time nonlinear plants
is presented. An RBF neural network is used to adaptively
compensate for the plant nonlinearities. The network weights
are adapted using a Lyapunov-based design. The method uses
parameter projection, control saturation, and a high-gain ob-
server to achieve semi-global uniform ultimate boundedness. The
effectiveness of the proposed method is demonstrated through
simulations. The simulations also show that by using adaptive
control in conjunction with robust control, it is possible to tolerate
larger approximation errors resulting from the use of lower order
networks.

Index Terms—Adaptive control, output feedback, RBF net-
works.

I. INTRODUCTION

I N recent years, the analytical study of adaptive nonlinear
control systems using universal function approximators has

received much attention (see [14] for references). Typically,
these methods use neural networks as approximation models
for the unknown system nonlinearities [2], [4], [5], [9], [10],
[14]–[17]. A key assumption in most of these methods is that
all the states of the plant are available for feedback.

In [1], Aloliwi and Khalil developed an adaptive output feed-
back controller for a class of nonlinear systems and pointed out
the potential application of their method to linear-in-the-weight
neural networks. In this paper, we investigate the use of a ra-
dial basis function (RBF) neural network for the purpose. From
a mathematical perspective, RBF networks represent just one
family in the class of linear in the weight approximators. This
class includes, among others, splines, wavelets, certain fuzzy
systems and cerebellar model articulation controller (CMAC)
networks (see [5] and [6] for references).

Our design is developed for systems represented by input-
output models. Augmenting integrators at the input side, the ex-
tended system is represented by a state model. RBF networks
are used to approximate the system’s nonlinearities and the net-
work reconstruction errors1 contribute to a matched disturbance.
The results of [1] show that, provided the upper boundon the
disturbance is small enough, the mean-square tracking error will
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be of the order , where is a design parameter. In order
to realize small reconstruction errors, it is often necessary to use
high-order networks. In [1], the fact that the disturbance satis-
fies the matching condition is exploited to design an additional
robustifying control component for the case whenis not small.
The design guarantees that, provided an upper bound on the dis-
turbance is known, the mean square tracking error can be made
of the order where both and are design parame-
ters. Thus, it is possible to tolerate larger approximation errors
resulting from the use of lower order networks.

II. PROBLEM STATEMENT

We consider a single-input-single-output nonlinear system
represented globally by theth-order differential equation

where is the control input, is the
measured output, denotes theth derivative of , and

The functions and are smooth functions of
In particular

and

We augment a series of integrators at the input side of the
system and represent the extended system by a state-space
model. The states of these integrators are , ,
up to and we set as the control input
of the extended system. Taking , , up to

yields the extended system model

(1)

where
Assumption 1: and

Assumption 1 ensures that (1) is input–output linearizable by
full state feedback. Using the results of [3], it can be shown that
there exists a global diffeomorphism

1The network reconstruction error is defined in Section III.
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with which transforms the last state equations
of (1) into

(2)

This, together with the first state equations of (1), defines a
global normal form. The objective is to design an output feed-
back controller which guarantees that the outputand its deriva-
tives up to order track a given reference signal and its
corresponding derivatives, while keeping all the states bounded.
The reference and its derivatives up to orderare assumed
to be bounded and is assumed to be piecewise continuous.

III. FUNCTION APPROXIMATION USING GAUSSIAN RADIAL

BASIS FUNCTIONS

The control design presented in this paper employs an RBF
neural network to approximate the functions and over
a compact region of the state space. RBF networks are of the
general form where is a vector of
adjustable weights and a vector of Gaussian basis func-
tions. Their ability to uniformly approximate smooth functions
over compact sets is well documented in the literature (see [16]
for references). In particular, it has been shown that given a
smooth function where is a compact subset of

and there exists a Gaussian basis function vector
and a weight vector such that

The quantity
is called thenetwork reconstruction error .

The optimal weight vector defined above is a quantity re-
quired only for analytical purposes. Typically is chosen as
the value of that minimizes over that is

(3)

The choice of the Gaussian network parameters used in our con-
trol design is motivated by the discussion in [16]. The basis func-
tions are located on a regular grid that contains the subset of in-
terest of the state space. The update law for the weight vector
is derived in the next section.

IV. CONTROL DESIGN

In this section, we first design an adaptive output feedback
controller under the assumption that the network reconstruction
errors are “small.” Next, the condition of small reconstruction
errors is relaxed by adding a robustifying control component
to make the mean-square tracking error arbitrarily small. The
design of the output feedback controller is done in two steps:
first, a state feedback controller is designed; then, the states are
replaced by their estimates provided by a high-gain observer.
We start with the following representation for the functions
and valid for all and where and are
compact sets defined in Section IV-A1

(4)

Assumption 2:The vectors and belong to known com-
pact subsets and Typically, some off-line
training is done to obtain values and that result in “good”
approximations of the functions and over This can
be accomplished, for example, by the standard backpropogation
technique [7]. The sets and are then chosen judiciously
as compact sets that contain and If we denote the “op-
timal” reconstruction errors that result from the use of the vec-
tors and by and respectively, then, in view of
the off-line training, it is reasonable to expect that our choice
of the sets and will result in reconstruction errors
and that are comparable to and , respectively.
Notice also that it is simply possible to choose the setsand

arbitrarily large. However, this would be undesirable from
the viewpoint of using parameter projection. The fixed optimal
weights and in (3) are replaced by their time varying esti-
mates and , that are adapted during learning. The network
approximations associated with these weights are denoted by
and , respectively.

Assumption 3: and
where is a compact set that contains in its interior.

A. Small Reconstruction Error

Under the assumption of small reconstruction errors, we de-
sign an adaptive contoller so that the outputtracks the given
reference signal Define

and

Let

and and be any given compact subsets of and ,
respectively, such that and We
rewrite (1) as

(5)

where2 and
are controllable canonical pairs that represent chains

of and integrators, respectively, and is chosen such that
is Hurwitz.

Assumption 4:The system has a unique
steady-state solution Moreover, with the system

(6)

2The dependence on^� and^� comes throughv: See (8).
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has a continuously differentiable function that satisfies3

where and are independent of The
steady-state response of a nonlinear system is introduced in [8].
Basically, it is a particular solution toward which any other so-
lution of the system converges as time increases. The inequali-
ties satisfied by imply that such convergence is exponential.
They also imply that (6), with as input, is input-to-state stable.
Consequently, the zero dynamics of (1) are exponentially stable
and (1) is minimum phase.

1) State Feedback:Let be the solution of the
Lyapunov equation where
and consider the Lyapunov function candidate

(7)

where and and
are gains to be specified later. Using (6) the

derivative of along the trajectories of the system is given by

Taking

(8)

we can rewrite the expression foras

(9)

where and
Let be a compact subset of that contains

in its interior. Define

diag and

The parameter adaptation law is chosen as in [12], i.e,
, where for and is modi-

fied outside to ensure that

(10)

and belongs to a compact set where
As an example of parameter projection, consider the case

when is the convex hypercube

3Unless otherwise specified,k � k denotes the Euclidean norm.

Let

where is chosen such that and choose to be a
positive diagonal matrix. In this case the projection
is taken as

if or
if and or
if and

if and

if and

(11)

By our design of the RBF network, we seek to impose a bound
on over a compact subset of With that goal, we first
assume that and belong to known compact subsets

and and let Choose

and define and
Let be a compact subset of such that is

in the interior of and

and

The set can be determined using the Lyapunov functionof
Assumption 4. The basic idea is to chooselarge enough that
the set is positively invariant, and then determine the
corresponding set in the-coordinate. The RBF networks are
used to approximate and over the compact set
Define and by and let

The adaptation gains and are chosen large enough to en-
sure that This is different from [1] where the
adaptation gain is not required to be large. This is because, in [1],
the parameter vectorhas some physical meaning and the com-
pact set to which it belongs is knowna priori. In particular,
the definition of the set implicitly involves the set In the
present case however, the compact setsand to which the
optimal weights and of the neural network belong them-
selves depend on the setbecause the approximation ofand

is done over the set Hence the set has to be defined
prior to, and consequently, independent of the setsand
This requires making the adaptation gains large.

Let where the maximization
is done over all and
Using (7), (9) and (10), we have

(12)
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Fig. 1. The reference signal and its derivatives.

where and
If then on

Thus the set is positively
invariant for all Inside this set, As long as

will remain in Thus the trajectory is
trapped inside the set
Hence all the states are bounded and from (12), there exists
a such that for all , the tracking error is of the
order , where and

2) Output Feedback:To implement the controller devel-
oped in the previous section using output feedback, we replace
the states by their estimates provided by a high gain
observer (HGO). The control is saturated outside a compact
region of interest to prevent the peaking induced by the HGO
[12]. We assume that and Let

where the maximization is taken

over all , , ,
where Define the saturated function by

where is the saturation function. The output feedback
controller is taken as The HGO used
to estimate the states is the same one used in [12] and is de-
scribed by the following equations:

(13)

where is a design parameter that will be specified shortly.
The positive constants are chosen such that the roots of
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Fig. 2. (a) State feedback,� = 0:5: (b) Output feedback,� = 10 ; � = 0:5: (c) Output feedback� = 10 ; � = 0:5: (d) Output feedback� = 10 ;

� = 0:1:.

have negative real parts. Let
and

where is the solution of the Lyapunov
equation Boundedness
of all signals of the closed-loop system can be proved by an
argument similar to the one in Section IV-A1. First, it is not
difficult to show that for all there
exist constants such that the sets and

are positively invariant. Next, using the results of
[1], for all belonging to the set

the derivative of satisfies

(14)

where Hence for all

and

(15)

on and the set is positively invariant.
Using the difference in speeds between the slow and fast vari-
ables and the fact that outside
it can be shown that the trajectory enters the setduring the
time interval , where as Hence, as in
the previous case, for sufficiently smalland , all the states are
bounded and (14) is satisfied for all Hence the “ap-
proximate tracking error” is of the order

Adaptive output feedback control that uses parameter
projection, high adaptation gain, and control saturation has also
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Fig. 3. (a) State feedback,� = 0:5. (b) Output feedback,� = 10 ; � = 0:5. (c) Output feedback� = 10 ; � = 0:5. (d) Output feedback� = 10 ;

� = 0:1:.

been considered in a similar setting by [11]. In particular, [11]
contains a result similar to the one in this section, namely that,
the tracking error can be made as small as desired by increasing
the observer and parameter adpatation gains.

B. Reconstruction Error with a Known Bound

We design an additional robustifying control component to
make the mean-square tracking error arbitrarily small, irrespec-
tive of the bound on the disturbance, provided this bound is
known. Let

(16)

We will choose the robustifying component using the Lya-
punov redesign technique, e.g., [13]. Assume that

where and are known. Take and define

for

for
(17)
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(a)

(b)

Fig. 4. (a)F (y; _y). (b) F (y; _y) � theta f(y; _y).

and

(18)

The adaptive controller is taken as
The arguments of the preceeding section can be extended to
show that and , such that

and , all signals are bounded and that for all
, the tracking error is of the order ,

and can be made arbitrarily small by appropriate choice of the
design parameters, , , and

V. SIMULATIONS

In this section, three simulations are presented to illustrate the
points made in the earlier sections. The programs for the simula-

tions are written in Matlab, using the neural-network toolbox. In
the first simulation, we show the effect of changing various de-
sign parameters on the tracking error. In the second, we attempt
to justify the need to adapt for the network’s weights. Last, we
demonstrate the effect of the network’s size on the controller’s
performance. The plant used in all these simulations is the same
one used in [16] and [17], namely where

and

A. Simulation 1

The plant output is required to track a reference signalthat
is the output of a low-pass filter with transfer function

Authorized licensed use limited to: San Diego State University. Downloaded on May 07,2010 at 19:19:35 UTC from IEEE Xplore.  Restrictions apply. 



76 IEEE TRANSACTIONS ON NEURAL NETWORK, VOL. 11, NO. 1, JANUARY 2000

Fig. 5. (a) No adaptation for weights, no robust control. (b) Only adpatation for weights. (c) Only robust control. (d) Adaptation for weights and robust control.

, driven by a unity amplitude square wave input with
frequency 0.4 Hz and a time average of 0.5. The reference and
its derivatives are shown in Fig. 1. As can be seen, the set
can be taken as Since
there is no need to augment integrators at the system’s input.
Let We use two RBF networks to ap-
proximate the functions and over The networks
have 48 Gaussian nodes with variance4 spread over a
regular grid that covers Off-line training is done to obtain
weights and that result in “optimal” approximations of
the functions and However, the reconstruction errors are
still quite large in this case, at some points being comparable to
the value of the function itself. Based on the values ofand

4See [16] for a definition of this term in relation to RBF networks.

, the sets and in Assumption 1 are taken as ,
and , , where the addition and

subtraction are done componentwise. The adaptation gains
and are taken for simplicity as The value in (11) is
taken as 0.001. The values of the other design parameters are

and The initial condition is taken as
( 0.5,2.0). Fig. 2(a) shows the tracking error for the state feed-
back case with Fig. 2(b) is the output feedback case
with Fig. 2(c) with reduced to and Fig. 2(d)
with reduced to 0.1. Fig. 3 shows the corresponding control
inputs. The simulation illustrates several points: 1) by using a
robustifying component, it is possible to obtain reasonable per-
formance even with networks that give large reconstruction er-
rors; 2) as is decreased, we recover the performance obtained
under state feedback; and 3) an-fold decrease in results in
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Fig. 6. Effect of network size on the controller’s performance.

approximately an -fold decrease in the tracking error. Thus, by
decreasing , we can meet more stringent requirements on the
tracking error.

B. Simulation 2

The initial weights obtained by off-line training may not be
close to their optimal vlaues. This might, for example, be the
case when the off-line training is done (based) on a nominal
model that differs considerably from the actual one. For defi-
niteness, suppose the function is any one of the func-
tions

where and and that
a nominal model is the one used before, that is,

For simplicity, we take Further, the reference signal
is taken as This time, we use an RBF network with
192 Guassian nodes to “construct” the function , with the
parameters of the network chosen as before. Based on the nom-
inal model, we do off-line training to obtain initial estimates

and The choice of the set is crucial. It is chosen
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in a way which gaurantees that any of the functions men-
tioned above can be reasonably approximated5 by some in

By this, we mean that, for every possible choice of,
, and , there exists such that

For the purpose of simulation,
the values of , , and are taken to be 17, 0.4, and 0, re-
spectively. This choice ensures that with the “nominal” weights

the reconstruction error is quite large in the region of the
state space where the reference lies. Fig. 4 shows the function

and the error that results from using the
nominal weights. The values of the parameters used in the de-
sign are and

The initial condition is taken as 0.9 2.75
Fig. 5(a) shows the tracking error for the case when there is no
adaptation for the weights, that is, and no robust control
component, Fig. 5(b) for the case when the weights are adapted
but there is no robust component, Fig. 5(c) for the case when
the weights are not adapted but there is a robust component, and
Fig. 5(d) for the case when the weights are adapted and a robust
component is used.

The following points are noteworthy. In the first case the
tracking error is quite large because we simply do a crude can-
cellation of the network nonlinearity based on a nominal model.
When we start adapting for the weights, the difference between
the function and its estimate provided by the network de-
creases and hence the tracking error also decreases. However,
even with the network providing its “best” approximation, there
is a residual error. In the case where we simply use robust con-
trol, the performance shows an improvement over the first case
and is almost comparable to the error in the second case. Finally,
in the case where we do both adaptation and robust control, the
network reconstruction error decreases and the robust compo-
nent handles this smaller error better. Thus the tracking error is
the smallest in this case.

C. Simulation 3

In Section IV-B we saw that decreasingresults in a decrease
in the mean-square tracking error. While theoreticallycan be
made as small as we want, it is not always possible in prac-
tice to do so. This is because, in many practical applications,
the system contains high-frequency unmodeled dynamics. De-
creasing implies a “high-gain like” feedback inside the layer

which might result in the excitation of the unmod-
eled dynamics. In this section, we assume thatcannot be made
smaller than 0.1, fix it at this value and examine the controller’s
performance as the network size is varied. To be able to do this,
we first need to define a “suitable” measure of the network’s
performance. For a given network, let denote ul-
timate bounds on the tracking error6 corresponding to initial
conditions We take the mean-square error

to be a measure of the network’s performance. We
use the same plant used in the previous simulation, with ini-
tial estimates for the weights based on the nominal model. The
reference is chosen as 0.4 0.1 We compare the per-

5This might require making
 larger than what it would have been if we had
assumed that the actual and the nominal models are identical.

6As observed by simulation.

formance of three networks, having 64, 100 and 144 Gaussian
nodes, respectively. The networks are used to constructon

For each network, four sets of initial
conditions for the state are used, 0.9 0.9 0.9 0.9
0.9 0.9 and and the mean-square error is evalu-

ated. Fig. 6 summarizes the results of the simulation. The dashed
line shows the mean-suare error for the case when only robust
control is used, the dotted line for the case when only adapta-
tion is used and the solid line for the case when both adaptation
and robust control are used. As can be seen, the error is almost
constant in the first case. Thus, by using only robust control,
we cannot hope to decrease the error beyond a certain point. In
the second case, the mean-square error decreases as the network
size increases. This is not surprising because increasing the net-
work’s size increases its approximation capabilities. Since the
error is of the order it decreases as
the size of the network increases. This suggests that as require-
ments on the tracking error become more stringent, it becomes
necessary to increase the size of the network. Last, the perfor-
mance in the last case is the best of the three cases.

VI. CONCLUSIONS

An adaptive output feedback scheme that uses RBF neural
networks has been studied for the control of a class of non-
linear systems represented by input–output models. The objec-
tive of the design is to achieve good tracking performance in
the absence of known system dynamics. The method is based
on the results of [1] and uses RBF networks to approximately
construct the system nonlinearities. The reconstruction errors
of the networks are not required to be small, thus allowing for
the use of lower order networks. This is made possible by com-
bining robust control tools with those of adaptive control. An-
other merit of the scheme is the use of the HGO to robustly es-
timate the output derivatives, thus dispensing with the require-
ment of availability of all the states. A key difference from the
work of [1] is the requirement that the parameter adaptation
gains be sufficiently high. The results are similar to those of
[11], which also considered adaptive output feedback control
in a similar setting. The effectiveness of the scheme is demon-
strated through simulations. The simulations also illustrate the
effect of changing various design parameters and of the network
size on the controller’s performance.
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