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Output Feedback Control of Nonlinear Systems
Using RBF Neural Networks

Sridhar Seshagiri and Hassan K. Khafiéllow, IEEE

Abstract—An adaptive output feedback control scheme for the be of the orde(e + d), wherecis a design parameter. In order
output tracking of a class of continuous-time nonlinear plants tg realize small reconstruction errors, it is often necessary to use
Icsong[)eesnesrgteed'fol?ntheRBp'I:ar?teﬂﬁlirngﬁggks I?hisiinx)orid\?v%tigﬁtlg high-order networks. In [1], the fact that the disturbance satis-
are adapted using a Lyapunov-based design. The method usesiies th(_e matchmg condition is exploited to deS|gn an additional
parameter projection, control saturation, and a high-gain ob- robustifying control component for the case wiiia not small.
server to achieve semi-global uniform ultimate boundedness. The The design guarantees that, provided an upper bound on the dis-
effectiveness of the proposed method is demonstrated through turbance is known, the mean square tracking error can be made
simulations. The simulations also show that by using adaptive of the orderO(e + 1), where bothe and: are design parame-
control in conjunction with robust control, it is possible to tolerate ters. Thus. it is' possible to toIera;ce larger approximation errors

larger approximation errors resulting from the use of lower order :
networks. resulting from the use of lower order networks.

Index Terms—Adaptive control, output feedback, RBF net-
works. [l. PROBLEM STATEMENT

We consider a single-input-single-output nonlinear system
represented globally by thath-order differential equation
y™ = F() + G(-)ul™ wherew is the control inputy is the
I N recent years, the analytical study of adaptive nonlineg{easured output,)® denotes theth derivative of(-), and

control systems using universal function approximators hgs — ,, The functionsF and G are smooth functions of,
received much attention (see [14] for references). Typically() ... ,(n=1) 4 (1) ... 3,(n=D |n particular
these methods use neural networks as approximation models
for the unknown system nonlinearities [2], [4], [5], [9], [10], F()=Fy,y®, -y g, u® o ym=D)
[14]-[17]. A key assumption in most of these methods is that
all the states of the plant are available for feedback. and
In [1], Aloliwi and Khalil developed an adaptive output feed-
back controller for a class of nonlinear systems and pointed out
the potential application of their method to Iinear-in-the-weigivv

neural networks. In this paper, we investigate the use of a fas augment a series o integrators at the input side of the

dial basis function (RBF) neural network for the purpose. FroﬁYStem and represent the extended system by a state-space

. ; . model. The states of these integrators are= u, zo = u(b,
a mathematical perspective, RBF networks represent just one (m—1) (m) .
o . . . . Up'to z, = u and we setv = «\™ as the control input
family in the class of linear in the weight approximators. This . &)
. : : of the extended system. Taking = ¥, z2 = %'*/, up to
class includes, among others, splines, wavelets, certain fuzzy

n—1 P
systems and cerebellar model articulation controller (CMACT)" =y~ yields the extended system model
networks (see [5] and [6] for references).
Our design is developed for systems represented by input-
output models. Augmenting integrators at the input side, the ex-

. INTRODUCTION

G() = Gly,y®, -y @ M)y,

a'ci:xi_H, 1SLS7’L—1
Zn =F(z,2) + G(z, 2)v

tended system is represented by a state model. RBF networks Zi =Zit1s I<ism-—1

are used to approximate the system’s nonlinearities and the net- Zm =

work reconstruction errotgontribute to a matched disturbance. y =1, 1)
The results of [1] show that, provided the upper bodrah the

disturbance is small enough, the mean-square tracking error wilerez = [z1,---, 2,7, 2 = [21, -+, Zm] %"

Assumption 1:|G(z,z)| > k; > 0¥z € R" andz € R™.
Assumption 1 ensures that (1) is input—output linearizable by
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with 71(0, 0) = 0, which transforms the last. state equations ~ Assumption 2:The vectorg/; andd; belong to known com-
of (1) into pact subsetQ ; C RP* and(2, C P2, Typically, some off-line
training is done to obtain valuég, andd,, that resultin “good”
(= H((, »). (2) approximations of the functions andG overY x Z. This can
be accomplished, for example, by the standard backpropogation
This, together with the first state equations of (1), defines aechnique [7]. The set@; and{}, are then chosen judiciously
global normal form. The objective is to design an output feea@s compact sets that cont#ip andd,, . If we denote the “op-
back controller which guarantees that the ougpamd its deriva- timal” reconstruction errors that result from the use of the vec-
tives up to ordern — 1 track a given reference signgl and its  tors¢; andd;, by dz.(-) andd;(-) respectively, then, in view of
corresponding derivatives, while keeping all the states bound#te off-line training, it is reasonable to expect that our choice
The referencey,. and its derivatives up to orderare assumed of the sets2; and2, will result in reconstruction errorgg(-)
to be bounded angl™ is assumed to be piecewise continuouginddc () that are comparable t}.(-) andd (), respectively.
Notice also that it is simply possible to choose the $gtsand
(1, arbitrarily large. However, this would be undesirable from
the viewpoint of using parameter projection. The fixed optimal
_ o weights¢; andgy in (3) are replaced by their time varying esti-
The control design presented in this paper employs an RRfates) ; andd,, that are adapted during learning. The network
neural network to approximate the functiafig) andG(-) over  gpproximations associated with these weights are denotéd by
a compact region of the state space. RBF networks are of Q'H’dé, respectively.
general formF'(-) = 67 f(.), whered € RP is a vector of Assumption 3:|G(-)| = k» > 0¥z € Y, z € Z andd, €

adjustable weights and(-) a vector of Gaussian basis fu_”c'fzg, where(2, is a compact set that contaif¥g in its interior.
tions. Their ability to uniformly approximate smooth functions

over compact sets is well documented in the literature (see [16] small Reconstruction Error
for references). In particular, it has been shown that given a
smooth functionF: Q — R, where{ is a compact subset of
R™ ande > 0, there exists a Gaussian basis function vect
f: R™t" — RP and aweight vectat* € R? such thatlF'(z)—
6" f(z)] < ¢ Vo € Q. The quantityF (x) — 67 f(z) < d(z) e =yl — 0D =g, 0D 1<i<n
is called thenetwork reconstruction error . ’ ' SR -
The optimal weight vecto#* defined above is a quantity re-and
quired only for analytical purposes. Typically is chosen as

I1l. FUNCTION APPROXIMATION USING GAUSSIAN RADIAL
BASIS FUNCTIONS

Under the assumption of small reconstruction errors, we de-
S}Qn an adaptive contoller so that the outputacks the given
reference signay,.. Define

the value of¥ that minimizesi(z) over(2, that is e=ler e, en]”
« . T Let
6* = arg min {sup |F(x) — 6" f(x)|}. (3)
ER? "1cq

(&) =ly(®), vV @), "B

The choice of the Gaussian network parameters used inourcon- (¢ = [y,.(t), gV (8), - - - , 5~V (0)]F

trol design is motivated by the discussion in [16]. The basis func- B Y DT C S DI GOV (4

tions are located on a regular grid that contains the subset of in- Ya(t) =lur(®),0r ()50, 4 (0]

terest of the state space. The update law for the weight véctogndy;, andYy be any given compact subsets®f and R"+1,
is derived in the next section. respectively, such thaf(0) € Y, andVr(t) € Yr V¢ > 0. We
rewrite (1) as

~

IV. CONTROL DESIGN

_ . ' _ . é:Ame—i—b{Ke—i—jSTf(e—i—y,,,z)—i—G;Tg(e—i—y,,,z)v
In this section, we first design an adaptive output feedback U )

controller under the assumption that the network reconstruction +d(e+ Ve 2.0r,05) =y}
errors are “small.” Next, the condition of small reconstruction 2 = A2z + bav (5)
errors is relaxed by adding a robustifying control component J
to make the mean-square tracking error arbitrarily small. TH§€'€ d(c + Y, 2,0,0,) = dr(-) + da()v,(A,b) and
design of the output feedback controller is done in two stepgi2, b2) are controllable canonical pairs that represent chains
first, a state feedback controller is designed; then, the states @& andm integrators, respectively, arid is chosen such that
replaced by their estimates provided by a high-gain observéyy = A — bK is Hurwitz. _
We start with the following representation for the functidris) Assumption 4:The system( = H((,),) has a unique
andG(-), valid for allz € ¥ andz € Z, whereY andZ are Stéady-state solutiop Moreover, with¢ = ¢ — ¢ the system

compact sets defined in Section IV-Al 1y

C:H(Z—i_ 5a6+y7‘) - H(Zay7)
F(z,2) =037 f(x,2) + dp(z, 2), EH(C e, V,0) (6)
G(x,z) = H;Tg(a:, z2) + dg(z, 2). (4) 2The dependence dfy andd, comes through. See (8).
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has a continuously differentiable functidi(t, ¢) that satisfies Let

ml¢)? < Vit Q) <mallf? Qs = {0la; — 5 < 6; <b;+68},1<i<p}
vy Vi - s ~ - : ' ' '
—_— —~H T S —_ . ~
at ac (66 Yr,¢) < =mallI” + malic el where§ > 0is chosen such th&ls C 2, and choosé’ to be a
positive diagonal matrix. In this case the projectitwwj(6, ¢)

whereny, 72, 13 >,0, andny > 0 are independent g¥,.. The . taken as
steady-state response of a nonlinear system is introduced in t@].
Basically, it is a particular solution toward which any other SO'[Pro'(é A);
lution of the system converges as time increases. The inequali- o
ties satisfied by; imply that such convergence is exponential. ViiPis
They also imply that (6), witl as input, is input-to-state stable.
Consequently, the zero dynamics of (1) are exponentially stable
and (1) is minimum phase. =
1) State FeedbackLet P = PT > 0 be the solution of the
Lyapunov equatio® A,,, + AL P = —Q whereQ = Q7 > 0,
and consider the Lyapunov function candidate Vii

if 6; > b; andg; < 0or
if 6, < a; andd)i >0

Vii

1+b”; i]d)i, if §; > b; andg; > 0

8
V=c"Pe+ 36710, + 36, 1,16, @) (11)

27g g

1+ ei_“i] ¢, if; < a;ande; < 0.

N . _ O* — g p* _ 17T
}Vh(a_rele’} _>9_f 0 aer); egins fg beeg ae:(ijﬁl;é Iatgrf UZinO ?g;jthgy our design of the RBF network, we seek to impose a bound
g -9 9 P ' 9 ond(-) over a compact subset &**™. With that goal, we first

derivative ofV along the trajectories of the system is given byassume that(0) and z(0) belong to known compact subsets

. ~, o ~, o i m _ v
V =—TQec + 9}“1—\;19)0 + eg“l-w;leg EqyCR andZOIC Rdefand lete; = maxee g, dif Pe. Choose
0T Ppi T §+T ca > cianddefinell = {¢"'Pe < i} andY = {e+V,|c €
+ 2¢” Pb{67; fA(e :Ir Vi, 2) + 05 gle+ IV, 2)v E,)Y, € Yg}. Let Z be a compact subset &™ such that7, is
+d(e+Vr, 2,05,0,) + Ke—y™}. in the interior ofZ and
Taking 2(0) € Zy and e(t) € BVt > 0= () € 2Vt > 0.
_ n _ ¢ j
v= Ket r e —ty”’ % 0y) The setZ can be determined using the Lyapunov funcfigrof
Gle+Yr, 2,04) Assumption 4. The basic idea is to choesdarge enough that
d;fz/}(e’ 2 Vn, éf, ég) (8) the se{V; g c.}is posmvely mv_anant, and then determine the
i corresponding set in the-coordinate. The RBF networks are
we can rewrite the expression fer as used to approximat&(-) andG(-) over the compact séf x Z.

. - L1k Define s, and{2s, by 25 = Q5s, x s, and let
V=-¢ QC+9fFf [Hf—l“fd)f]

- b _ 1/4 «*T\—1/) *
+ 67T, 1[0, — Tyy] + 267 Phd(-) 9) 2=~ max (0 — 07 ) (0 —0)

G;EnyejEQéf

where ¢y = 2¢"Pbf(e + Vp,2) and ¢, = 2¢' Pbg(e + c3 = max
Y, z2)9(:). Let Qf be a compact subset éf”* that contains 05€82,0, €05,
(¥ in its interior. Define

(B, — 601 (B, — 62).

[ M

. The adaptation gairis; andl’, are chosen large enough to en-

b 0; j_ b; i 6 [ sure thaty —c; > ¢z +c3. Thisis different from [1] where the
e, - @g ’ - ég , 9= by |’ adaptation gain is notrequired to be large. This is because, in[1],
e _ A A A the parameter vectérhas some physical meaning and the com-

['=diagly,Iyl, Q=% xQ, and Q=07 xQ, pact sef to which it belongs is knows priori. In particular,

The parameter adaptation law is chosen as in [12]6i.es the definition of the seE implicitly involves the setl. In the

Proj(é, ¢), whereProj(d,¢) = I'¢ for 6 € © and is modi- present case however, the compact Sgtaind(2, to which the
fied ou’tsideQ to ensure 'Ehat optimal weightsd; and¢; of the neural network belong them-

. selves depend on the 98t because the approximation Bfand
67T —T'¢] <0 (10) G is done over the séf x Z. Hence the set” has to be defined
. . prior to, and consequently, independent of the Setand(2,,.
andé(t) belongs to a compact s@v¢ > 0, where2 > Qs O Thijs requires making the adaptation gains large.
2. As an example of parameter projection, consider the casq et d = max ||d(c+ Y, z, 6, 8,)||, where the maximization
when(2 is the convex hypercube is done over alk + V. € Y,z € Z,0; € Qs, andd, € Qs,.

Q= {Bilas < 0; <}, 1<i<p=pi+pal Using (7), (9) and (10)Ye € F we have

3Unless otherwise specifiefl, || denotes the Euclidean norm. V< —kV+ k(ca + c3) + kad (12)
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Reference signal

First derivative

Second derivative

Fig. 1. The reference signal and its derivatives.

where k= ( mm( )/)\ma.x( )) and kd = . maXecE over alle € El déf {CTPC < 05}, z € Z, yR c YR, éf c Qé_[y
2llel[ |20l If d < d* = k(ca — c3 — co)ka, thenV < Oon  § ¢ O, wherec; > 4. Define the saturated functiapr by
{V =cs} N Qs. Thusthe se{V < ¢4} N Qs is positively ‘

invariant for alld < d*. Inside this sete € E. As long as R Wie,z,Vr, 0,0

¢ € E, z will remain in Z. Thus the trajectoryc, z, 6) is Ve, 2, Vr,0y,0,) = S sat < ( ; .60)
trapped inside the sét; = {c € £} x {z € Z} x {0 € Qs}.
Hence all the states are bounded and from (12), there eXigieresat(-) is the saturation function. The output feedback
ar > 0such that for alt > r, the tracking error is of the .,ntroller is taken as — $°(6.2,Yr, 0;,8,). The HGO used
order O(d + (1/v5) + (1/75)), wherey; = Anmin(l's) @nd 1 estimate the states is the same one used in [12] and is de-

g = Amin(l'y)- ) scribed by the following equations:
2) Output FeedbackTo implement the controller devel-
oped in the previous section using output feedback, we replace & =G ((31 — &), 1<i<n—1
the statese by their estimatest provided by a high gain . o -
observer (HGO). The control is saturated outside a compact én = ?(el - 61) (13)

region of interest to prevent the peaking induced by the HGO
[12]. We assume thaif(0) € €y and6,(0) € €,. Let wherec > 0Oisadesign parameter that will be specified shortly.
S > max |[¢(e, 2, Vr, 05, 8,)| where the maximization is taken The positive constants; are chosen such that the rootss9f-

Authorized licensed use limited to: San Diego State University. Downloaded on May 07,2010 at 19:19:35 UTC from IEEE Xplore. Restrictions apply.



SESHAGIRI AND KHALIL: OUTPUT FEEDBACK CONTROL OF NONLINEAR SYSTEMS USING RBF NEURAL NETWORKS 73

Tracking errors

T T T T T T T T T

N W A OO

-

K=}

0 1 12 13 14 15 16 17 18 19 20
—2(c)—

0 . ; : ; : i ; ; ;
10 1 12 13 14 15 16 17 18 19 20
—2(d)—

Fig. 2. (a) State feedback, = 0.5. (b) Output feedbacks = 102, u = 0.5. (c) Output feedback = 10—, ¢ = 0.5. (d) Output feedback = 10—*,
pn=0.1.

a1s" 4+ .-+ a,_15 + ap, = 0 have negative real parts. Letwherek. > 0. Hence for all

&= (ei—&/e™),1<i<n &=, ,&])  andV; = k(ca — e3 — co)

¢7P¢, whereP = P° > 0 is the solution of the Lyapunov d<d = o

equationP(A — HC) + (A — HC)'P = —1. Boundedness ,q ¢

of all signals of the closed-loop system can be proved by an . k(cs—c3—c2)

argument similar to the one in Section IV-Al. First, it is not c< e =T (15)

difficult to show that for all(c,§) € {V < ¢y} N Qs, there

exist constantss,c; > 0 such that the setl; < ¢g} and V' < 0on{V = ¢4} N Qs and the sefkis positively invariant.

{Ve < c7¢?} are positively invariant. Next, using the results otJsing the difference in speeds between the slow and fast vari-
[1], for all (e, é7 57 £) belonging to the set ables and the fact thézf;. < —(1/26)||£||2 outside{Vf < 0762}

it can be shown that the trajectory enters theRBaturing the
time interval[0, T'(¢)], whereT'(¢) — 0 ase — 0. Hence, as in

the previous case, for sufficiently smélainde, all the states are
bounded and (14) is satisfied for all> T'(¢). Hence the “ap-
proximate tracking error” is of the ord€p(e + d + (1/v;) +
(1/+4)). Adaptive output feedback control that uses parameter
V< —kV + k(eo + c3) + kee + kyd (14) projection, high adaptation gain, and control saturation has also

RI{{VSC4} n QO} X {Vl < C(;} X {Vf SC762}

the derivative ofl” satisfies
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Fig. 3. (a) State feedback, = 0.5. (b) Output feedback; = 10—, y = 0.5. (c) Output feedback = 10~%, u = 0.5. (d) Output feedback = 10—,
p = 0.1..

been considered in a similar setting by [11]. In particular, [1M/e will choose the robustifying component using the Lya-
contains a result similar to the one in this section, namely thatinov redesign technique, e.g., [13]. Assume that
the tracking error can be made as small as desired by increasing
the observer and parameter adpatation gains.
14O < ple,2) +kollall, 0 <ky < 1
B. Reconstruction Error with a Known Bound

We design an additional robustifying control component t@herep andk, are known. Takey(c, z) > p(e, z) and define
make the mean-square tracking error arbitrarily small, irrespec= 2¢7 Pb
tive of the bound on the disturbande provided this bound is

known. Let
A O LT
™ _f j bolez) =4 L Ea (17
_ —Ketuy” —Fle+ YV, 2,0p) + v e n*(e,z) s
v= = - . (16) ————2 . — forn(e,z)|s| < p
Gle+Vr, 2,0,) (1—ky) n
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Function : F()

20

@

Error : F()-8" ()

(b)

Fig. 4. (@)F(y,9). (b) F(y, §) — theta f(y,9).

and tions are written in Matlab, using the neural-network toolbox. In
o the first simulation, we show the effect of changing various de-

Y(e,z,Vr,0¢,0,) sign parameters on the tracking error. In the second, we attempt
_ —Ke+ U — F(e+ Y, 2.05) + (e, 2) to justify the need to adapt for the network’s weights. Last, we

(18)  demonstrate the effect of the network’s size on the controller's
performance. The plant used in all these simulations is the same

The adaptive controller is taken as= 9°(¢, z, Vg, ;,6,). ©One usedin [16] and [17], namely= I'(y, y) + G(y)u where

é(e —l—y,,,z,ég)

The arguments of the preceeding section can be extended to . . N 2
show thatde* > 0, u* > Oandr > 0, suchthav0 < ¢ < F(y,3) = 168111(47@) <Sm(7.ry)>
e*and0 < p < p*,all signals are bounded and that fortatt amy Y

7, the tracking error is of the ordé¥(e + .+ (1/~5)+(1/7v4)), and

and can be made arbitrarily small by appropriate choice of the ]

design parametets p, I'y, andT’,,. G(y) = 2+ sin(3n(y — 0.5)).

V. SIMULATIONS A. Simulation 1

In this section, three simulations are presented to illustrate theThe plant output is required to track a reference sign#hat
points made in the earlier sections. The programs for the simuila-the output of a low-pass filter with transfer functiéh +

Authorized licensed use limited to: San Diego State University. Downloaded on May 07,2010 at 19:19:35 UTC from IEEE Xplore. Restrictions apply.



76 IEEE TRANSACTIONS ON NEURAL NETWORK, VOL. 11, NO. 1, JANUARY 2000

Tracking Errors for 4 Different Cases

05
04f - e e -------- ------- . 0.45..“...‘5 ........ AAAAAAA .

. oa ]
P SRS VSR S SR

0a3p - ........ ........ REREREE 4

025K - - AAAAAAAA ........ SRR p

0
0 2 4 6 8 10 o 2 4 6 8 10
—5(a)— —5(b)—
05 v , v r 0.5
oash . SR S, e | 0.45
o4} - - ........ ........ ,,,,,,, i 0.4
: ’ ' 0.35
0.35}
0.3}
0.3}
0.25¢
0.25}
0.2
0.2
0.15
0.15 0.1
0.1 0.05
0.05 oo 2 4 6 8 10
—5(c)— —5(d)—

Fig. 5. (a) No adaptation for weights, no robust control. (b) Only adpatation for weights. (c) Only robust control. (d) Adaptation for weightssandmtsbl

5/10)73, driven by a unity amplitude square wave input witlf,,, the set$2; and§2, in Assumption 1 are taken &, — 0.1,
frequency 0.4 Hz and a time average of 0.5. The reference ahg + 0.1] and[4,, — 0.1, 8,, + 0.1], where the addition and
its derivatives are shown in Fig. 1. As can be seen, thé/get subtraction are done componentwise. The adaptation fgins
can be taken a0, 1] x [—3,3] x [—25,25]. Sincem = 0, andl', are taken for simplicity as0%1. The values in (11) is
there is no need to augment integrators at the system’s ingaken as 0.001. The values of the other design parameters are
LetY =d°f [—1,1] x [-3, 3]. We use two RBF networks to ap-n = 40 andk, = 0.7. The initial conditionz(0) is taken as
proximate the functions'(y, ¢/) andG(y) overY . The networks (—0.5,2.0). Fig. 2(a) shows the tracking error for the state feed-
have 48 Gaussian nodes with varianeé = 47 spread over a back case withy = 0.5, Fig. 2(b) is the output feedback case
regular grid that covery™. Off-line training is done to obtain with e = 10~3, Fig. 2(c) withe reduced tal0—*, and Fig. 2(d)
weightsfy, andé,, that result in “optimal” approximations of with x reduced to 0.1. Fig. 3 shows the corresponding control
the functionsF' andG. However, the reconstruction errors arénputs. The simulation illustrates several points: 1) by using a
still quite large in this case, at some points being comparablertibustifying component, it is possible to obtain reasonable per-
the value of the function itself. Based on the valueg gfand formance even with networks that give large reconstruction er-
rors; 2) as is decreased, we recover the performance obtained
4See [16] for a definition of this term in relation to RBF networks. under state feedback; and 3) asfold decrease i results in
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Effect of Network Size on Controller's Performance
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Fig. 6. Effect of network size on the controller's performance.

approximately am-fold decrease in the tracking error. Thus, bwherek; € 15,17, k» € [-0.5,0.5] andk; € [—1, 1] and that
decreasing:, we can meet more stringent requirements on tleenominal model is the one used before, that is,
tracking error.

B. Simulation 2 | I
Y Y

The initial weights obtained by off-line training may not be
close to their optimal vlaues. This might, for example, be the
case when the off-line training is done (based) on a nominal
model that differs considerably from the actual one. For defror simplicity, we takeZ(y) = 1. Further, the reference signal

niteness, suppose the functiéify, ) is any one of the func- is taken ag;. = 0.4. This time, we use an RBF network with

tions 192 Guassian nodes to “construct” the functiBf ), with the
parameters of the network chosen as before. Based on the nom-
Flui) — & sin(4dr(y — kz)) [ sin(w(y — k3)) 2 inal model, we do off-line training to obtain initial estimates
(w.9) =h dr(y — ko) (5 — k3) 6;, andd,,. The choice of the s&®; is crucial. It is chosen
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in a way which gaurantees that any of the functidi{s) men- formance of three networks, having 64, 100 and 144 Gaussian
tioned above can be reasonably approximalgdsomed; in  nodes, respectively. The networks are used to consfrush

Q. By this, we mean that, for every possible choicekof Y = [-1,1] x [—1,1]. For each network, four sets of initial

k2, andks, there exist®); € Qy such tha{F(-) — 67 f(-)] ~ conditions for the state are used(—0.9, —0.9), (~0.9,0.9),
|Erom () — 9?0 f()Vy, ¥ € Y. For the purpose of simulation, (0.9, —0.9) and(0.9,0.9) and the mean-square error is evalu-
the values oft1, k-, andks are taken to be 17, 0.4, and 0, reated. Fig. 6 summarizes the results of the simulation. The dashed
spectively. This choice ensures that with the “nominal” weightifie shows the mean-suare error for the case when only robust
6,, the reconstruction error is quite large in the region of theontrol is used, the dotted line for the case when only adapta-
state space where the reference lies. Fig. 4 shows the funcfion is used and the solid line for the case when both adaptation
F(y,7) and the erro(-) — 6% f(-) that results from using the and robust control are used. As can be seen, the error is almost
nominal weights. The values of the parameters used in the genstant in the first case. Thus, by using only robust control,
sign arel’ = 101, § = 0.001, ¢ = 10~*, » = 20, %k, = 0 and We cannot hope to decrease the error beyond a certain point. In
1 = 0.2. The initial conditionz(0) is taken ag0.9,—2.75). the second case, the mean-square error decreases as the network
Fig. 5(a) shows the tracking error for the case when there is $ige increases. This is not surprising because increasing the net-
adaptation for the weights, thatI3; = 0 and no robust control Work’s size increases its approximation capabilities. Since the
component, Fig. 5(b) for the case when the weights are adap@tpr is of the ordeO (e +d+(1/v;)+(1/v,)), it decreases as

but there is no robust component, Fig. 5(c) for the case whie size of the network increases. This suggests that as require-
the weights are not adapted but there is a robust component, Br&hts on the tracking error become more stringent, it becomes
Fig. 5(d) for the case when the weights are adapted and a robiggessary to increase the size of the network. Last, the perfor-

component is used. mance in the last case is the best of the three cases.
The following points are noteworthy. In the first case the
tracking error is quite large because we simply do a crude can- VI. CONCLUSIONS

cellation of the netwo.rk nonllnearlty based ongnomlnal model.An adaptive output feedback scheme that uses RBF neural
When we start adapting for the weights, the difference betweﬁn

: ; : - . etworks has been studied for the control of a class of non-
the function/” and its estimaté" provided by the network de- ;o systems represented by input—output models. The objec-
creases and hence the tracking error also decreases. How

G&"of the design is to achieve good tracking performance in

even wit h the network providing its "best approximation, thethe absence of known system dynamics. The method is based
is a residual error. In the case where we simply use robust caon-

trol, the performance shows an improvement over the first ca%ré the resuilts of [1] and uses RBF networks to appr(_JX|mater
V. ! : (i nstruct the system nonlinearities. The reconstruction errors
and is almost comparable to the error in the second case. Fin B’the networks are not required to be small, thus allowing for
in the case where we do both adaptation and robust control,aihg use of lower order networks. This is made possible by com-
network reconstruction error decreases and the robust compo- .

. . ming robust control tools with those of adaptive control. An-
nent handles this smaller error better. Thus the tracking error % . .
. ofher merit of the scheme is the use of the HGO to robustly es-
the smallest in this case.

timate the output derivatives, thus dispensing with the require-

ment of availability of all the states. A key difference from the

work of [1] is the requirement that the parameter adaptation
In Section IV-B we saw that decreasipgesults in a decreasegains be sufficiently high. The results are similar to those of

in the mean-square tracking error. While theoreticallyan be [11], which also considered adaptive output feedback control

made as small as we want, it is not always possible in pran-a similar setting. The effectiveness of the scheme is demon-

tice to do so. This is because, in many practical applicatiorstrated through simulations. The simulations also illustrate the

the system contains high-frequency unmodeled dynamics. Réfect of changing various design parameters and of the network

creasingu implies a “high-gain like” feedback inside the layersize on the controller's performance.

|s| < (/) which might result in the excitation of the unmod-

eled dynamics. In this section, we assume the&innot be made REFERENCES
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