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Abstract— We consider the application of a conditional
integrator based continuous sliding mode control design for
robust regulation of MIMO minimum-phase nonlinear sys-
tems to the control of the lateral flight dynamics of an F-
16 aircraft. The system is non-affine in the input but can
be rewritten as the perturbation of a control affine system
with matched (input-dependent) disturbances. A parameter
dependent transformation brings the system to normal form,
for which an output-feedback control can be designed to
achieve robust regulation. We provide analytical results for
stability, and also show through extensive simulations that the
inherent robustness of the SMC design provides a convenient
way to design controllers without adaptation for the unknown
parameters, with a transient performance that is comparable to
discontinuous SMC, but without suffering from the drawback
of control chattering.

I. INTRODUCTION

The dynamic response characteristics of aircraft are highly

nonlinear. Traditionally, flight control systems have been

designed using mathematical models of the aircraft linearized

at various flight conditions, with the controller parameters or

gains “scheduled" or varied with the flight operating condi-

tions. Various robust multivariable techniques including lin-

ear quadratic optimal control (LQR/LQG), H∞ control, and

structured singular value µ-synthesis have been employed in

controller design, an excellent and exhaustive compendium

of which is available in [9]. In order to guarantee stability

and performance of the resulting gain-scheduled controllers,

analytical frameworks of gain scheduling have been devel-

oped, including the powerful technique of linear-parameter-

varying (LPV) control [3], [8], [18], [21]. Nonlinear design

techniques such as dynamic inversion have been used in [1],

[11], [20], while a technique that combines model inversion

control with an online adaptive neural network to “robustify"

the design is described in [12], and a nonlinear adaptive

design based on backstepping and neural networks in [7]. A

radial basis functions neural network (RBFNN) based adap-

tive design with time-scale separation between the system

and controller dynamics, with applications to control of both

longitudinal (angle-of-attack command systems) as well as

lateral (regulation of the sideslip and roll angles) dynamics is

described in [22]. A succinct “industry perspective” on flight

control design, including the techniques of robust control

(H∞, µ-synthesis), LPV control, dynamic inversion, adaptive

control, neural networks, and more, can be found in [2].

Our interest is in the design of robust sliding mode control

(SMC) for the lateral flight dynamics of a F-16 aircraft. More
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specifically, we wish to design the aileron and rudder controls

to asymptotically track desired references for the side-slip

and roll angles. The application of SMC to flight control has

been pursued by several others authors, see, for example, [4],

[5], [19]. Our work differs from earlier ones in that it is based

on a recent technique in [14], [16] for introducing integral

action in SMC, that we refer to as “conditional integrators".

The controller that we present has a very simple structure;

aside from an “input-decoupling" term, it is simply two

saturated high-gain PID controllers, with the (anti-windup)

conditional integrator, and the derivative estimated by a high-

gain observer. This controller structure is a special case of a

general design for robust output regulation for multiple-input

multiple-output (MIMO) nonlinear systems transformable

to the normal form, with analytical results for stability

and performance described in [14], [16]. The inclusion of

integral control in SMC design on the one hand allows us to

use smaller gains, while the conditional design means that

integral action takes place only inside the boundary layer,

allowing us to recover the transient performance of ideal

(discontinuous) SMC, but without suffering from the trade-

off between tracking accuracy and robustness to unmodeled

high-frequency dynamics.

The rest of this paper is organized as follows. In Section 2,

we describe the nonlinear mathematical aircraft model, while

in Section 3, we present our controller design, based on the

results in [14], [16]. Simulation results showing the efficacy

of the design, including demonstrating the robustness to

parameter uncertainties, disturbances and time-delays, are

presented in Section 4. Finally, a summary of our work

and some suggestions for possible extensions are provided

in Section 5.

II. AIRCRAFT LATERAL MODEL

The model of the lateral dynamics that we use for con-

trol design is described below, and is extracted practically

verbatim from [22].

φ̇ = cos γ0

cos θ0

ps + cos γ0

cos θ0

rs

β̇ =
Yβ

V
β + Yr

V
rs + gcos θ0

V
φ− rs

ṗs = Lββ + Lpps + Lrrs + δl(ps, rs)+
Lδa

(β, δa) + Lδr
(β, δr)

ṙs = Nββ +Npps +Nrrs + δn(ps, rs)+
Nδa

(β, δa) +Nδr
(β, δr)































(1)

The system has 4 states φ, β, ps and rs, which are re-

spectively the roll angle, the sideslip, and the stability

axis roll and yaw rates, and two inputs δa and δr, which
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are respectively the aileron and rudder control. The other

variables in (1) are the gravitational constant g, the trimmed

pitch angle θ0, the trimmed flight path angle γ0, the true

airspeed V , the aerodynamic stability and control derivatives

Yβ and Yr (which can be taken as being approximately

constant), the incremental rolling and yawing moments δl
and δn that are unknown functions of the roll and yaw

rates, and the rolling and yawing moments due to aileron

and rudder deflections Lδa
, Lδr

, Nδa
, Nδr

. Following [22],

we assume that the nonlinear terms δl(ps, rs) + Lδa
(β, δa)

+ Lδr
(β, δr) and δn(ps, rs) + Nδa

(β, δa) + Nδr
(β, δr) in (1)

can be expressed as shown below

δl + Lδa
+ Lδr

= Lδa0
(δa + f1(·)) + Lδr0

(δr + f2(·))
δn +Nδa

+Nδr
= Nδa0

(δa + f1(·)) +Nδr0
(δr + f2(·))

(2)

where the “linear terms" Lδa0
, Lδr0

, Nδa0
, and Nδr0

are

known (i.e., we use nominal values for these parameters)

and all uncertainty is lumped into the nonlinear functions

f1(β, ps, rs, δa) and f2(β, ps, rs, δr). Consequently, system

(1) can be written compactly in standard state-space form as








β̇

φ̇
ṗs

ṙs









= A









β
φ
ps

rs









+B

[

δa + f1(β, ps, rs, δa)
δr + f2(β, ps, rs, δr)

]

y =

[

1 0 0 0
0 1 0 0

]









β
φ
ps

rs









def
= Cx =

[

C1

C2

]

x

(3)

where

A =









Yβ

V
gcos θ0

V
0 −1

0 0 cos γ0

cos θ0

sin γ0

cos θ0

Lβ 0 Lp Lr

Nβ 0 Np Nr









, B =









0 0
0 0

Lδa0
Lδr0

Nδa0
Nδr0









(4)

In [22], it is assumed that based on available wind-tunnel

data, the unknown nonlinear functions f1(·) and f2(·) have

the following form:

f1(·) = ((1 − E1)e
−

β2

2δ1
2 + E1)(tanh(δa + h1)

+ tanh(δa − h1) + 0.001δa)
+ D1cos(A1ps − w1)sin(A2rs − w2) +D2

(5)

f2(·) = ((1 − E2)e
−

β2

2δ2
2 + E2)(tanh(δr + h2)

+ tanh(δr − h2) + 0.001δr)
+ D3cos(A3ps − w3)sin(A4rs − w4) +D4

(6)

A physical interpretation of the constants 0 < E1,2 < 1 as

the percentage of the control effectiveness available at high

angles of sideslip is discussed in [22]. As opposed to [22]

where the design is based on adaptive approximation using

RBFNNs, we do not require to know the specific form of

the functions in our design, except to (numerically) verify

an assumption that we will make later on.

III. CONTROL DESIGN

Our control objective is to design a control signal δ =
[

δa(t)
δr(t)

]

such that the output y(t) =

[

β(t)
φ(t)

]

tracks a

smooth commanded reference input yref (t) =

[

βref (t)
φref (t)

]

,

robustly in the presence of roll/yaw parametric uncertainties

and aileron/rudder unknown control effects.

Our approach to control design is based (see [14], [16]) on

minimum-phase systems transformable to the normal form.

To simplify the presentation, we start with the SISO control-

affine case of a nonlinear system with full relative degree

ρ = n (i.e., with no zero-dynamics), that can be transformed

to the normal form

ξ̇ = Acξ +Bc [a(ξ) + b(ξ)u], y = Ccξ

where ξ ∈ Rρ the output and its derivatives up to order ρ−1,

and the triple (Ac, Bc, Cc) a canonical form representation

of a chain of ρ integrators, and the functions a(·) and

b(·) are unknown, but b(·) is globally bounded away from

zero, and a lower bound on its magnitude is known. Under

the assumption that all exogenous signals (that include the

reference yref (t)) are asymptotically constant, we proceed

with an integral control based design. In particular, for the

class of systems considered here, it is shown in [14], [16]

that a continuous sliding mode controller of the form

u = −ksign(b(·)) sat

(

k0σ + k1e1 + k2e2 + · · · + eρ

µ

)

(7)

can be designed to achieve robust regulation, where e1 =
y−yref is the tracking error, and e2, ..., eρ are its derivatives

up to order ρ, the positive constants ki, i = 1, · · · , ρ− 1 in

the sliding surface function

s = k0σ +

ρ
∑

i=1

kiei + eρ (8)

are chosen such that the polynomial

λρ−1 + kρ−1λ
ρ−2 + · · · + k1

is Hurwitz, and σi is the output of the “conditional integrator"

σ̇ = −k0σ + µ sat

(

s

µ

)

, σ(0) ∈ [−µ/k0, µ/k0] (9)

where k0 > 0, and µ > 0 is the “width" of the boundary

layer. From (8) and (9), it is clear that inside the boundary

layer |s| ≤ µ,

σ̇ = k1e1 + k2e2 + · · · + eρ

which implies that ei = 0 at equilibrium, i.e., (9) is

the equation of an integrator that provides integral action

“conditionally", inside the boundary layer. As shown in [14],

[16], such a design provides asymptotic error regulation,

while not degrading the transient performance, as is common

in a conventional design that uses the integrator σ̇ = e1. In

the case of relative degree ρ = 1 and ρ = 2, the controller

(7) is simply a specially tuned saturated PI/PID controller
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with anti-windup (see [16, Section 6]).

The control (7) can be extended to the output-feedback

case 1 ei by its estimate êi, obtained using the high-gain

observer (HGO)

˙̂ei = êi+1 + αi(e1 − ê1)/ε
i, 1 ≤ i ≤ ρ− 1

˙̂eρ = αρ(e1 − ê1)/ε
ρ

}

(10)

where ε > 0, and the positive constants αi are chosen such

that the roots of

λρ + α1λ
ρ−1 + · · · + αρ−1λ+ αρ = 0

have negative real parts. To complete the design, we need

to specify how k, µ and ε (in the output-feedback case) are

chosen. The parameter k is chosen “sufficiently large" (to

overbound uncanceled terms in ṡ) while µ and ε are chosen

“sufficiently small", the former to recover the performance

of ideal (discontinuous) SMC (without an integrator) and

the latter to recover the performance under state-feedback

with the continuous SMC. Analytical results for stability and

performance are given in [14], [16].

While we abstracted the design from [14], [16] above

for SISO systems for the sake of clarity of presentation,

the design in those papers was done for MIMO systems.

Consequently, our next step is to extend the design presented

above for the MIMO system (3), keeping in mind the basic

features presented above. To that end, we first rewrite

f1(·, δa) = f1(·, 0) + δf1
(·, δa)

f2(·, δr) = f2(·, 0) + δf2
(·, δr)

and define f(·, 0)
def
=

[

f1(·, 0)
f2(·, 0)

]

. Then, it is easy to check

that with δfi
(·) ≡ 0, the control-affine system ẋ = Ax +

B[u + f(·, 0)] has strong vector relative degree ρ = {2, 2},

since C1B = C2B = 0 and T = CAB is nonsingular, and

that with δfi
(·) 6= 0, the change of variables

e1β = β − βref , e2β = ė1β , e1φ = φ− φref , e2φ = ė1φ

transforms the system to a normal form very similar to the

one in the SISO case, that is identical to the general case

considered in [14]. In particular, it can be verified that the

equations for ė2β and ė2φ take the form

ė2z = bz(x)−z̈ref+ti1(δa+δf1
(·))+ti2(δr+δf2

(·)), z = β, φ

where T = CAB = {tij}. As done in the SISO case, for

z = β, φ, we define

sz = kz0σz + kz1e1z + e2z

σ̇z = −kz0σz + µz sat
(

sz

µz

)

}

(11)

where the second set of equations represent conditional inte-

grators that provide integral action only inside the boundary

layers |sz| ≤ µz . When δfi
(·) = 0, a standard sliding mode

1This might be required even when the original state x is available, since
ξ and hence ei, which is required in the control, depend on the state through
possibly unknown parameters.

argument (see, for example, [16]) shows that the control

δ = T−1v
def
= T−1

[

vβ

vφ

]

, vz = −γz sat

(

sz

µz

)

(12)

achieves semi-global regulation, provided the gains γβ and

γφ can be chosen “sufficiently large", and the boundary

layer widths µβ and µφ are chosen “sufficiently small".

More precise analytical results for stability and performance

of the above control design in the control-affine case (i.e.,

δfi
(·) = 0) can be found as [16, Theorems 1 & 2].

With δfi
(·) 6= 0, which really is the case of interest here,

an additional assumption is required, which we state below.

To see the motivation for this assumption, we differentitate

(11) and with the control as defined in (12), we rewrite the

resulting equation in the form

ṡz = ∆z(x, σ, e, z̈ref , v) − γz sat

(

sz

µz

)

(13)

where σ =

[

σβ

σφ

]

, and e =

[

eβ

eφ

]

, with ez =

[

e1z

e2z

]

, z = β, φ.

From (13), it is clear that for the control term vz =

−γzsat
(

sz

µz

)

to “overbound" the term ∆z(x, σ, e, z̈ref , v),

which in turn depends on both vβ and vφ, some restriction

needs to be imposed on the way ∆z(·, v) depends on v. The

next assumption states this restriction precisely.

Assumption 1:

max

∣

∣

∣

∣

∆z(·)

γz

∣

∣

∣

∣

≤ %z + κz1 |vβ | + κz2 |vφ| , z = β, φ

where the maximization is taken over some compact set S
of interest, the constants 2 %z and κzi are known and I−K ,

where K =

[

κβ1 κβ2

κφ1 κφ2

]

, is an M-matrix.

The constants γz in the control (12) are chosen as follows.

The fact that I−K is an M-matrix implies that (i) (I−K) is

nonsingular, (ii) the elements of (I−K)−1 are non-negative,

and (iii) there exists a vector l with lz > 0 such that the

elements of b = (I −K)l are all positive. For z = β, φ, let

%̄ =

[

%̄β

%̄φ

]

, with %̄z ≥ %z , and take γz = ψz + lz , where

ψ =

[

ψβ

ψφ

]

= (I − K)−1%̄. With this choice of γz , the

analysis in [14] shows that the (state-feedback) control (11),

(12) achieves robust regional regulation, with S a subset of

the region of attraction. The design is then extended to the

output-feedback case by replacing e2z = ė1z , z = β, φ, in

(11) (and hence also in the control (12)) with their estimates

using HGOs. While we have not verified Assumption 1

rigorously, our simulation results, which we present next,

validate (the assumption and) our control design.

IV. SIMULATION RESULTS

For our simulations, we use the same values of the aircraft

parameters that are used in [22]. In particular, for the trim

2The function %z can be chosen to be error dependent, and is assumed
constant only for convenience. It can always be chosen to be constant over
compact sets, but at the cost of conservatism.
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values corresponding to an airspeed of V = 502ft/s and

angle of attack α = 2.11◦, we have

A =









−0.3220 0.0640 0.0364 −0.9917
0 0 1 0.0393

−30.6490 0 −3.6784 0.6646
8.5395 0 −0.0254 −0.4764









,

B =









0 0
0 0

−0.7331 0.1315
−0.0319 −0.0620









The values of the constants that appear in the expressions

for f1(·) and f2(·) are computed using averaged (and curve-

fitted) wind-tunnel data for α = 0◦ and α = 5◦, with the

curve fit approximation done over β ∈ [−30◦, 30◦], ps ∈
[−180◦, 180◦], rs ∈ [−90◦, 90◦], δa ∈ [−21.5◦, 21.5◦], and

δr ∈ [−30◦, 30◦]. From [22], the corresponding values for

the constants then are A1 = A2 = A3 = A4 = 0.1, D1 =
0.075, D2 = 0.0016, D3 = 0.45, D4 = 0, ω1 = ω3 = 1.5,

ω2 = ω4 = 0, E1 = E2 = 0.3, h1 = 7, h2 = 4, σ1 =
0.015, σ2 = 0.15. The commanded reference input is taken

as

[

βref (t)
φref (t)

]

=





0.2
(

− 0.5
1+et−8 + 1

1+et−30 − 0.5
)

0.2
(

− 0.5
1+et−8 + 1

1+et−30 − 0.2
)





All initial conditions are taken as zero. Throughout, we

assume the (nominal) value of the decoupling matrix T =

CAB =

[

0.005 0.0663
−0.7344 −0.1291

]

, and for the controller pa-

rameters, kβ0 = kφ0 = kβ1 = kφ1 = 5, and kβ = kφ = 10 3.

The numerical values of the HGO parameters (for both the

HGOs) are chosen as ε = 0.1, α1 = 15, and α2 = 50. For

clarity of presentation, we consider the following three cases:

A. The linear case: ẋ = Ax +Bu, fi(·) ≡ 0

Our first simulation shows the performance of the control

designed in Section 3, but without integral action and when

there are no actuator dynamics. Since there is no need to use

SMC when the parameters are exactly known, in order to

make the simulation meaningful, we assume that the values

of A and B are randomly perturbed from their nominal

values by 20%. The results are shown in Figure 1, for 2

different values of both µβ and µφ, namely µ = 1 and

µ = 0.1. From the figure, it is clear that the controller

achieves good performance, even without integral control.

The figure also shows that the errors are non-zero without

integral control, but decrease as µ decreases.

The previous simulation shows that in the absence of

integral control, |e| = O(µ), and we must decrease µ in order

to achieve smaller steady-steady state errors, and this is clear

from the simulation results. However, smaller values of µ
can induce chattering when there are switching imperfections

such as delays or unmodeled actuator dynamics. On the other

3In addition to the saturated values of kβ and kφ of vβ and vφ

respectively, we also saturate the controls δa and δr at their physically
allowable limits of 21.5◦ and 30◦ .
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µ
φ
=0.1

Fig. 1. Tracking errors without actuator dynamics and no integral control.

hand, the inclusion of integral action means that we don’t

need to make µ very small to achieve small errors, only

small enough to stabilize the equilibrium point. In order

to emphasize this, we repeat the previous simulation, but

assume first order actuator lag dynamics with time constant

τ = 20.2sec, i.e., H(s) = 20.2
s+20.2

. The simulation results

are shown in Figure 2, and it is clear that there is chattering

in the control as µ is made small in order to obtain smaller

errors4.
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−1

−0.5

0

0.5

1

δ
a
(t

) 
(d

e
g
)

µ
β
 = 0.1, no actuator dynamics

0 1 2 3 4 5
−40

−20

0

20

40

µ
β
 = 0.1, with actuator dynamics

δ
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φ
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e
g
)
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−20
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0
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Time (sec)

δ
r(t

) 
(d

e
g
)

Fig. 2. Effect of decreasing µ in the presence of (unmodeled) actuator
dynamics.

4Robustness of the conditional integrator based SMC design to time
delays has also been demonstrated by simulations for the case of control of
longitudinal dynamics (specifically the pitch-rate) of an F-16 in a related
paper [10].
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As mentioned before, with integral control, we don’t need

to decrease µ in order to obtain smaller errors. To that end,

we repeat previous simulation with µ = 1, but with the

conditional integrator, and the results shown in Figure 3. It

is clear that the inclusion of integral control makes the error

asymptotically converge to zero.
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Fig. 3. Recovery of asymptotic regulation with conditional integrator.

It is important to note that the results presented above

are only valid under output feedback. In particular, if one

uses the original state x, then the disturbances are no longer

matched when A is perturbed (any perturbation in B clearly

constitutes a matched disturbance), so that if one uses ė1β =
C1Ax− β̇ref to compute e2β and use it in the control (and

similarly for ė1φ), then the error will not be zero even with

integral control when A is different from its nominal value

(since our design explicitly uses the fact that the disturbances

are matched). However, with the transformation to normal

form, the disturbance is matched, and it is well-known (see,

for example, [6, Chapter 14]) that the HGO can be used

for this class of systems (where the states are the output

and its derivatives) to achieve asymptotic error regulation.

A discussion of the effect of measurement noise on the

HGO is discussed in our related work in [17] on the control

of F-16 longitudinal dynamics, where we show that the

performance is not degraded significantly when the HGO

is used with noisy measurements, and so we do not repeat

similar simulations in this current work.

B. The control affine case: ẋ = Ax+B(u + f(·, 0))

As shown in Section 3, the controller for this case has

the exact same structure as that in the preceding case.

Consequently, we simply repeat some of the simulations

in the preceding subsection, with some minor differences.

There is no need to perturb A and B in this case, since now

the system already contains the unknown functions f(·, 0).
Figure 4 shows the tracking performance in the presence

of the unknown functions f(·, 0), and it is clear that the

controller achieves good performance, and that the errors

asymptotically converge to zero with the integral control.
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Fig. 4. Asymptotic regulation in control-affine case with unknown
nonlinearities f(·, 0).

C. The control non-affine case: ẋ = Ax+B(u + f(·, u))

When the function f(·) depends on u, we need to verify

Assumption 1, and design the gains γz , z = β, φ accordingly.

As mentioned in the preceding section, we do not rigorously

verify (numerically) that this assumption holds in our work,

but simply choose the gains to be their physically maximum

allowable value, and demonstrate the efficacy of the design

through simulations. To do so, we repeat the simulation of

the previous subsection, but now with f(·, u), and not just

f(·, 0). We also do so with several different initial conditions,

with the simulation results plotted in Figure 5. The figure

clearly shows that the initial error is larger as we move

from the first row to the last (the initial conditions for β
and φ were chosen that way) but that the controller achieves

good performance in the presence of the control-dependent

unknown nonlinearities f(·, u).
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Fig. 5. Asymptotic regulation in control non-affine case with unknown
nonlinearities f(·, u) for several different initial conditions.
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Before we present our conclusions, we mention again that

our controller has a very simple structure, that of a saturated

PID controller with “anti-windup" like integrator, and an

input-decoupling matrix. The only precise knowledge that

the controller requires is the relative degree of the system

and the signs of the high-frequency gains. It is robust to

unmodeled actuator lag dynamics, and also to time-delays

and measurement noise (as demonstrated in related work).

For the non-affine in the control case, our simulation results

are comparable to the ones presented in [22], where the

controller is much more complex, and uses RBFNNs in

conjunction with time-scale separation in an adaptive control

design. We note that the design presented in this paper is

flexible enough to allow for error-dependent or time-varying

gains γz and also allow cancellation of any known/nominal

terms in ṡ. This is elaborated upon in both [14], [16], but we

did not mention it here for clarity of presentation. Finally,

the design presented here is valid for a more general class of

nonlinear systems than the F-16 lateral dynamics considered

in this work, and has been successfully applied to the control

of machines [15], process control [13], and F-16 longitudinal

dynamics [10], [17].

V. CONCLUSIONS

We have presented a new SMC design for control of the

lateral dynamics of an F-16 aircraft, based on the conditional

integrator design of [14], [16]. The idea is based on rewriting

the non-affine in the input system as a perturbation of a

control-affine system, with guaranteed analytical results for

stability and performance. The robustness of the method to

modeling uncertainties and unmodeled actuator lag dynamics

was demonstrated through simulation, with the transient

and steady-state performance comparable to that of a more

complex adaptive controller. In related work, we have shown

the robustness of the design to time-delays and measurement

noise (for the output-feedback case) 5. Consequently, we

believe that the results presented in this paper are a promising

start to demonstrate the efficacy of the conditional integrator

based SMC design to flight control.
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