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Abstract

This paper is on the design of robust output feedback integral control for minimum-phase nonlinear systems with a well-defined relative
degree. Previous work has shown how to design such controllers to achieve asymptotic regulation by a two-step process. First, robust
control is designed to bring the trajectories to a small neighborhood of an equilibrium point. Within this neighborhood, the control then
acts as a high-gain feedback that stabilizes the equilibrium point.

The asymptotic regulation achieved by integral action happens at the expense of degrading the transient performance. In this paper,
we present an approach to improve the transient performance. The control design is a continuous sliding mode control with integral
action. However, the integrator is introduced in such a way that it provides integral action only “conditionally”, effectively eliminating the
performance degradation. There are two main results in the paper: the first is asymptotic regulation and the second confirms the transient
performance improvement by showing that the output feedback continuous sliding-mode control with integral action can be tuned to
recover the performance of a state feedback ideal sliding mode control without integral action.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction feedback near the origin. Typically, the steady-state error is
of an order inversely proportional to the high-gain. To get
We consider the problem of robust output regulation for smaller errors, it is therefore necessary to increase the gain,
multi-input multi-output (MIMO) minimum-phase nonlin-  which is undesirable because it can excite unmodeled high-
ear systems transformable into the normal form, uniformly frequency dynamics. Moreover, in the case of min-max and
in a set of constant disturbances and uncertain parameterssliding-mode control, where a continuous controller is ob-
For this class of systems, robust continuous feedback con-tained by approximating a discontinuous one, trying to make
trol can be designed using techniques like high-gain feed- the approximation arbitrarily close results in chattering due
back, min—max control, or sliding-mode control (SMC), to to delays or unmodeled dynamid®(ng, Utkin, & Ozguner,
ensure convergence of the tracking error to a neighborhood1999. There is thus a trade-off between tracking accuracy
of the origin, while rejecting bounded disturbances. How- and robustness to high-frequency unmodeled dynamics.
ever, making the error small requires the use of high-gain  For constant or eventually constant exogenous signals, we
can achieve zero steady-state error by introducing integral
* This paper was not presented at any IFAC meeting. This article was action in the controllerByrnes, Priscoli, & Isidori, 1997
recommended for publication in revised form by Associate Editor T. Chen Huang & Rugh, 1992: Isidori, 1997; Isidori & Byrnes, 1990

O omesnonds st e Khalil, 1994, 2000; Mahmoud & Khalil, 1996integral con-
E-mail addressesseshagir@engineering.sdsu.€@u Seshagiri), _troI creates an _equilibrium point at which the tra_cking error
khalil@msu.eduH.K. Khalil). is zero. InKhalil (2000) andMahmoud and Khalil (1996)
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this (unknown) equilibrium point is stabilized using the fol- controlu; is designed to cancel known or nominal terms in
lowing two-step design philosophy. First, robust control is the expression foi and can be taken as

designed to bring the trajectories to a small neighborhood of
the equilibrium point. Within this neighborhood, the control

acts as a hlgh-galn feedback that stabilizes the equi"brium Wherea, é, and¢ are nominal values Q:f, b, andc, respec-
point. WhileMahmoud and Khalil (1996accomplishes this  tjvely. The switching controk is designed to handle the

through continuous min—max contrdkhalil (2000) uses  yncertain terms in the resulting expressionf@nd can be
continuous SMC (CSMC) to design the controller as a uni- tgken as

versal one, where the only precise information about the ) 3
plant that is used is its relative degree and the sign of its #2 = —[o(ex + 1) + flea| + ylea|” 4 01sgn(s),

high-frequency gain. where the positive constantsf3, andy are upper bounds on
The asymptotic regulation achieved by integral action |, _ 4| |» — |, and|c — ¢|, respectivelys > 0, and sgit)

happens at the expense of degrading the transient perig the signum function, defined by

formance. Even in the absence of control saturation, in- )

tegral action makes the response more oscillatory. Whenggpy,) — { 1 !f u>0,

the control saturates, integrator build-up results, causing 1 ifu<O

large overshoots and settling times. We present a newThjs choice ensures thatconverges to zero in finite time
approach for introducing integral action to alleviate this and stays there for all future time, which guarantees ¢hat
transient performance degradation. This is done within a andez converge to zero asymptotica”y_ Howe\/er7 as is well-
CSMC design framework. The integrator is modified to known, this design suffers from chattering in the presence
provide integral action only inside the boundary layer, i.e., of switching nonidealities or unmodeled high-frequency dy-
only “conditionally”. The improvement in transient per- namics. Various approaches have been proposed to reduce
formance is shown analytically by proving that the output or eliminate chattering, see, for exampRatolini, Ferrara,
feedback CSMC recovers the performance of a state feed-ysaj, & Utkin (2000); Levant & Fridman (200Rjnd the
back ideal SMC. Preliminary results were presented in references therein. The most common apprbais]to re-
Sheshagiri and Khalil(2001,2002) place the discontinuous term sgh by its continuous ap-

The rest of this paper is organized as follows. In Section proximation sats/x), where sat) is the standard saturation
2, we motivate the key points of the design and results via an fynction, defined by

example. In Section 3, we describe the system under consid- )

eration, and state our assumptions and the control objective ga(;) — { U, !f lul <1,

The control design is presented in Section 4, while the anal- sgnw), if ful>1.

ysis of the closed-loop system and performance recovery ofThis method can eliminate chattering but often at the cost
an ideal SMC design are shown in Section 5. The specializa-of a non-zero steady-state error, that is proportionadt_to

Uy = —kiep — (e +r)% — bey — Eeg,

tion to the universal integral regulator desigthglil, 2000 In order to obtain smaller errors, it is therefore necessary to
is done in Section 6. Finally, our conclusions are presented make i smaller, which in turn, leads to chattering again.
in Section 7. Itis possible to recover the asymptotic regulation achieved

by ideal SMC by using integral control within a CSMC set-
ting. Integral action is conventionally introduced by aug-
menting the system with an integrator driven by the track-
ing error, i.e.,6 = e1. In the case of the particular example,
suppose we do this and also modify the sliding surface to

2. Motivating example

Consider the second-order system

X1 = X2, s = koo + kie1 + e2, where nowkg and k; are chosen to
Xo = ax% + bxo + cx% +u, ensure that the polynomiaf + k14 + ko is Hurwitz, which
y = x1. (1) guarantees that when motion is restricted t80, the error

e1 converges asymptotically to zero. The previous steps can
The constant, b andc are assumed to be unknown, but {paon pe repeated to designin particular, we take

bounded with known bounds. The control objective is to .
regulate the outpup to a constant value. In ideal SMC ur = —koer — krez — aer +r)? — bep — ée3,

design, the sliding surface can be chose[_a askiey + e2, us = —[o(er + )2 + Bleal + ylea® + 8] salis/p).

whereey =y — r, e2 = ¢1, andk1 > 0. This ensures that

when motion is constrained o= 0, the errore; converges 1 Another popular approach, discussed extensivel@antolini et al.

asymptotically to zero. Differentiating, one obtains (2000) and Levant and Fridman (2002)s that of higher order sliding
modes (HOSM), where the discontinuous control is relegated to higher-

§ =kies 4+ ae1 + r)2 + bex + Ceg +u. order derivatives of the input. While the presentation Lisvant and

o . . . Fridman (2002)is restricted to SISO systems, MIMO systems are con-
Finite-time convergence to, and invariance sof 0 can be sidered inBartolini et al. (2000) but under the assumption of full state

achieved by choosing = u1 + u2, where the equivalent  feedback.
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Fig. 1. Asymptotic error regulation with improved transient performance
using the “conditional integrator”.
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Fig. 2. Performance recovery under the output feedback conditional inte-
grator design.

integral control recovers the asymptotic regulation that is
lost in the continuous approximation of ideal SMC (without
integral control), but at the expense of degraded transient

The presence of integral action guarantees that there is arperformance; in particular, the error convergence to zero is

equilibrium point, withinO (1) of the origin, at whiche; =0.
Now, to achieve asymptotic regulation we do not npdd
be arbitrarily small; we only need it to be “small enough”
to stabilize the equilibrium poirt. However, while integral

sluggish; (ii) the conditional integral design also achieves the
task of asymptotic regulation, but without any degradation in

transient performance; in fact, in the subplot for the transient
behavior, the responses of the ideal SMC and the conditional

control, as designed above, can achieve asymptotic regulaintegrator design are almost indistinguishable.
tion, the transient response deteriorates when compared to The transient performance recovery property of the con-

that under ideal SMC.

ditional integrator design is also retained under output feed-

To address the transient response degradation with con-back, when the state, is replaced by its estimai& ob-

ventional integral control, we modify the integrator design
as follows. Lets be as before, i.es = koo + kie1 + e2,
but nowkg > 0 is arbitraryk; > 0 is retained from the ideal
SMC design, and is the output of

0 = —koo + pusat(s/u). (2)

To see the relation of (2) to integral control, observe that
inside the boundary layéfs| < u}, (2) reduces té =k1e1+

ez = kie1 + é1, which implies thate; = 0 at equilibrium.
Thus (2) represents a “conditional integrator” that provides
integral action only inside the boundary layer. The control
is taken as in the continuous approximation of ideal SMC,
i.e.,u =u1+ up, where

Uy = —kies — (e +r)% — bey — 56:23,
up = —[oler + r)? + Plez| + yleal® + 8] sais/pw).

The simulation results are shownhig. 1. Numerical values
used in the simulation are=0.6,b=2.5,¢c=0.1,a =1,
b=2,6=0,r=1,4=05,$=06,y=0.1,0=1,u=0.1,
andx1(0)=x2(0)=0¢(0)=0. The constant; =5 in the ideal
SMC case, its continuous approximation, and the conditional
integrator design, witlto = 1 in the conditional integrator
design. The values @f andk; in the conventional integrator
design are taken as 25 and 10, respectively. The following
observations can be made frdfig. 1 (i) the conventional

2We naturally expect this fact to be of consequence when there are
switching nonidealities, and will show so through simulation later on.

tained from the high-gain observer (HGO)

e1=2¢éx+ aq(e1 — e1)/e,
A A 2
ex =op(e1 —e1)/e".

The positive constantg; and o, are chosen to assign the
roots of the Hurwitz polynomia12+oc12+ac2, andg is chosen
sufficiently small. In order to take care of the peaking phe-
nomenon associated with high-gain observeisfgndiari &
Khalil, 1992, the control is saturated outside a compact
set of interest. Simulation results are showrFig. 2, with

o1 = 15, 00 = 50, 1(0) = e2(0) = 0, and a saturation level

of 50 for the control. Performance recovery is shown in two
steps : (i) asu tends to zero, the response under state feed-
back CSMC approaches ideal SMC, (ii) for fixedthe re-
sponse under the output feedback CSMC approaches that
under state feedback CSMC atends to zero. For the gen-
eral case, we will prove in Section 5 that the closed-loop
trajectories under output feedback CSMC with the condi-
tional integrator approach those of the state feedback ideal
SMC asy, ¢ tend to zero.

The previous discussion showed how the design of the
controller proceeds in general. Since our design requires
that the control be bounded, a possible simplification of
the controller is to choose the equivalent control to be
zero and the coefficient of the switching component to be
constant, i.e.,

u=—k sat(s/u).



46

Since, in practical applications, a constraint on the control
magnitude appears naturally as an actuator limit, one might
simply choosé as the maximum permissible control magni-
tude. Since the only precise information about the plant that
such a controller uses is its relative degree and the sign of its
high-frequency gain, it is referred to asiaiversal integral
regulator (Khalil, 2000. We will discuss the universal inte-
gral regulator design further in Section 6 and show that the
integrator modification (2) can be interpreted, in this case,
as a special choice of a traditional anti-windup scheme.

To continue with this discussion, note that the control
magnitude required to accommodate a step changérin
creases as the step increases. One way to deal with this whe
the control is constrained with an a priori specified bound is
through trajectory planning schem@sin order to illustrate
this, we consider the following modification to the previous
simulations. The control is replaced by= —k sai(s/u),
with k£ =50. All other values are retained from the previous
simulations, except, which is increased to 1.5. One can
verify, for example, by simulation, that the sliding condition
is not satisfied. However, when the constant referentse
“smoothed” by passing it through the filtef (s + 1)2, with
7=0.5, the control magnitude is now sufficient to overcome
the uncertain terms and the sliding condition is satisfied.
Furthermore, since(0) = 0, the sliding condition ensures
that s stays inside the boundary layer for all future time,
which along withe1(0) = 0 implies that the erroe; itself
is small for all time, under both the conventional as well
as the conditional integrator designs. When the trajectory
stays inside the boundary layer during the transient period,
the conditional integrator acts as an integrator all the time;
hence, we do not expect any significant difference between
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Rig. 3. Effect of disturbance on the conventional and the conditional
integrator designs.

ideal SMC. Replacing the discontinuous control with its con-
tinuous approximation eliminates chattering wheg: 0.1,

but at the expense of a relatively large non-zero steady-state
error. Reducingu to 0.01 results in chattering again. The
non-zero steady-state error can be handled by the conditional
integrator design, where as mentioned earlier, the value of
u does not have to be made arbitrarily small and hence we
can expect that this design will not suffer from chattering.
This is validated by the simulation results lBiy. 4. While

we have included a simulation with a time delay to highlight
a merit of this approach, we do not present any analysis for
this case and shall not dwell on it further.

3. Problem statement

the transient responses of the two designs. The advantage cgnsider an MIMO nonlinear system, modeled by

of the conditional integrator design becomes clear when we

consider an unexpected disturbance that causes an abrupt
change in the state of the system. For example, consider arx = f(x, 0) +

additive impulse-like disturbanc#(r) of magnitude 75 act-
ing at the input of the system between-5 and 5.1385s.
The response of the two designs are showhiin 3. We see
from the plot on the left that while the system responses are
almost identical (indistinguishable in that plot) before the

m

> gite, O)[ui + i (x. 0, w)),
i=1

yi=hi(x,0), 1<i<m, (3
wherex € R" is the statey € R™ is the control input,
y € R™ is the output,0 is a vector of unknown constant

onset of the disturbance, the response to the disturbance iParameters that belongs to a compact@et R”, w(r) is

significantly degraded with the conventional integrator de-

a piecewise continuous exogenous signal that belongs to a

sign. The response before the disturbance is seen better iffompactseW c R?, f() andg; (-) are smooth vector fields

the plot on the right.
Lastly, before we present the system description and the
problem statement for the general case, we make a smal

on Ddzef D, x ©, whereD, is an open connected subset of
R", h;(-) are smooth functions oW, and the disturbances
16; (-) are continuous functions ob x W. The formulation

digression. In order to highlight the issue of chattering, we in (3) allows for matched disturbances that may depend on
repeat the first two simulations under the assumption thattime-varying exogenous signals. We will specify a restric-
a time delay ofT = 0.01 s precedes the control input. The tion on w shortly, when we are ready to state the control
results are shown ikig. 4. objective. Our first assumption is that the disturbance-free

We see from the figure that there is chattering in the con- system (3) has a well-defined normal form, possibly with
trol and that the property of asymptotic regulation is lost with zero dynamicsléidori, 1995.

3 A more detailed discussion on this issue can be found in the next Assumption 1. The systemx = f(x, 0) + g(x, Du, y =
section. h(x, 0) has uniform vector relative degrée;, p,, ..., p,,}
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Effect of time delay on ideal SMC,
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Fig. 4. Effect of time delay on the ideal SMC and the conditional integrator design.

in D, i.e.,

Lo LNhi(x)=0 for 0<k<p; —2,1<i<m, 1< j<m
def pi—1 . .

and A(x, 0) ={ngLf’ h;} is nonsingular for alk € D,

and0 € ©. Furthermore, the distribution sp@n, ..., gm}
is involutive, and there is a change of variables

nl_ | Tu(x, 0) .
[f]_T(x’O)_[Tz(x,H)}’ neR"P, EcR, (4)

where¢ = {¢'}, with &, =L§flh,-, 1<j<p;, 1<i<m, and
p=p1+p2+-+p, suchthatly n, = 0V1I<j<m,
1<i<n — p, andT(x, 0) is a diffeomorphism ofD, onto
its image.

The vector relative degree and involutivity of the distribu-

tion spargz, .. .
of variables (4) locally, for each (Isidori, 1995. Assump-

, gm} Quarantee the existence of the change

tion 1 goes beyond that by requiring (4) to hold on a given

region, uniformly ind.

With the change of variables (4), we rewrite (3) in the

normal form
n=¢. < 0),
E =M+ B [bi(n, & 0)

+ Y aij(n, & 0w+ 6;(n. & 0, w)),

j=1

(%)

where, for 1<i<m, the pair (A;, B;) is a controllable
canonical form that represents a chain @f integrators,
bi() = L hi, andfa;; ()} = A().

limit wyg, i.e., lim_sw () = ws. In a similar vein, the
reference; (r) that the outpuy; is required to asymptotically
track has the following two properties:

e ri(t) and its derivatives up to the,;th derivative are

bounded, andvl.(”")(t) is piecewise continuous, for all
t >0, _
o lim;_oori(t)=ris and lim_ o rl.(f)(t)zo for 1< j < p;.

This class of signals includes constant signals as a special
case. Formulating the problem with time-varying references,
which are asymptotically constant, accommodates a com-
mon practice in many applications; for example, in “trajec-
tory planning” schemes employed to achieve point-to-point
motion in the control of robotic manipulatorS¢iavicco &
Siciliano, 1996, Chapter)sor in pre-filter smoothing of a
step command in the control of electric drivdseénhard,
1985, Chapter 15 The formulation also takes advantage of
the two-step process outlined in the introduction, in the fol-
lowing sense. When the reference satisfies the first property,
the robust control design ensures ultimate boundedness of
the tracking error. When the second property is satisfied as
well, the integral action gaurantees that the error asymptot-
ically converges to zero.

Let ry = {riss), W@ = w — wg, V() = [r;i —
riss r 2 kP () = (177, andv(r) = (v). By
constructiongw(z), v(t), andw(z) are bounded for all >0
and converge to zero as— oco. Let X ¢ R™, A C RP,
andAp C R™ be compact sets such thgt € X, v(z) € 4,
andw(t) € Ag for all r >0, andip be a positive constant
such that||v| <lp for all v € A. Setd = (ry, 0, wys) and
D; = X x © x W. To solve the regulation problem, it

Our interest is in the regulation problem. To that end, we is necessary that for evey € Dy, thereexist an equi-

require that the exogenous signalt) approaches a constant

librium point at whichy = r;; and a control input that
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can maintain equilibrium. This is guaranteed by our next ov., oV,

assumption. 5 T a—z'¢(27€+V, d)< — 23(l1zID).

Assumption 2. For eachd € D, there exist a unique equi- VlizlZydlle +viD

librium pointx = x(d) € D, and a unique contral = it(d) foralle € E,z € Z, v € A, andd € D. Furthermore,
such that G= f(x, 0) + g(x, O)[u + 6(x, 0, wys)] andryg = y(lo) < /151(11(12))-

h(x, 0). (i) The equilibrium pointz = 0 of z = ¢(z, 0, d) is expo-

nentially stable, uniformly ini.
With the change of variables (4), the equilibrium point
(d) maps into(ij(d), &(d)), whereZ' (d)=[ris. 0, ..., 0]",

7 j ¢ j ; 4. ntroller ign
Letz =7y —qjande’ =& — & — v and rewrite (5) as Controller desig

Relying on the separation principldtassi & Khalil,

t=¢@etv.d), 1999 that is common to the output feedback designs of

&' = A + By [bi(z, e+ v, d) — " Khalil (2000) and Mahmoud and Khalil (1996)we pursue
" the same procedure for designing the controller used in
+ Z aij(z, e +v,d) those papers. First, a globally bounded partial state-feedback
j=1 controller that meets the design objectives is designed un-
X (uj+0j(z,e+v,d, W), (6) der the assumption thatis available for feedback. Next, a
high-gain observer is used to estimate the derivatives of the
where, for convenience, we write the functiofisb;, a;j, measured outputs).

ando; in terms of the new variables. Since we do not nec-
essarily require our assumptions to hold globally, we need 4 1 partial state feedback design
to restrict our analysis in the, ¢) variables to a region that
maps back into the domaib,. The following assumption

e The first step in the sliding mode design is to specify a
states such a restriction.

sliding surface on which sliding motion occurgo(ing et
al., 1999. In the absence of integral action, we define the

Assumption 3. There exist positive constantsand/y, in- sliding surfaces; = 0 by

dependent ofl, such that for ald € Dy, w € W,v e A

andw € Ao, ot

5i= D kjej +ep, 0
cc E¥lel <11} and zezZL|z] <i2) = x € D, /=1

where the positive constants, ...,kL__l are chosen such

In the output feedback case, the only components
of the state(z,e) that are available for feedback are ' '
e} =y; —ri, 1<i <m. The unavailability of the partial-state ity k},i,lﬂ’"_2 +Fk
e is dealt with by using a high-gain observer to estimate
its unmeasured components. The unavailability, & not
an issue because we will design the conirdio regulate
the errore to zero and then rely on a minimum-phase-like
assumption, stated below, to guarantee boundedness of

that the polynomial

is Hurwitz, which guarantees that when motion is con-
strained to the surfacg = 0, the tracking errorei and its
derivatives converge to zero. Differentiating (7) and using
(6), we have

The assumption has two parts. The first part states that with ) m
(e + v) as the driving input, the systetn= ¢(z, ¢ + v, d) §i=Fi(z,e,v,d,r;""") + Z aij(uj+06;()1, (8)
is input-to-state stable over a certain regi#tinélil, 2002, j=1

which implies that withe =0, the origin ofz = ¢(z, 0, d) is (o) pi1 i
asymptotically stable. This is strengthened in the second partWhere Fi() = bi() —r™" + 3 5Ly kel . Let F(z e, v,
of the assumption to local exponential stability of the origin. d, w) = {Fi(z, e, v, d, ri(’)"))}. In the SISO case, (8) reduces
tos = F(-) +a(-)[u + ()] and a standard assumption in
Assumption 4. this case is to require the sign @f-) to be known and(-)
to be bounded away from zero. Our next assumption can be
(i) There existaC™" proper functionV : Z — Ry, possibly  thought of as a straightforward extension to the MIMO case.
dependent orl, and classk functions4; : [0, [2) —
Ri(i=1,23) andy: [0 lo+ /1) - Ry, independent  Assumption 5. A(z, e+v,d)=1I(z, e+v,d)A(e, v) where
of d, such that A is a known nonsingular matrix and= diagy,, ..., 7,1,
with 9;(-) 27y9>0, 1<i<m, foralle e E,z € Z, v € 4,
ZalzID <V (2, z, d) < A2(lizID, d € Dy, and some positive constayy.
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In the ideal SMC case, the contmolcan then be taken as

u=Ae, v[—F(e, v, @) +v],

Vi = _ﬁi (@, v, w) Sgr(sl')ﬂ (9)

where F; () is a nominal value ofF; (), which could be,
but not restricted tof;(-) = Z?":_llki’e{H — rl.(p") + bi (),
Bi(-) being a nominal value adf; (-), and the component;
is designed to handle uncertainties. Note that) = 0 is
possible. The choice ¢f;(-) will be made clear shortly.
Guided by the motivating example in Section 2, we intro-
duce integral action as follows. First, the ideal sliding sur-
face functions; of (7) is modified to

pl_l
s; = kéai + Z ki-ei/ + ei)[_, (10)
=1
whereg; is the output of
. i Si
g; = —kogi + H; S&t(—) s
i
i (0) € [—p; / ko, 1 / ko), (11)

with ké > 0, andy; a small positive parameter to be specified
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of the region of attraction. The functiorfs are chosen as
b (-)=0;(-)+qi, whereg; > 0. From (13) and (14), it follows
that inside V., s;s; < — yg ¢i |sil, wheneverls;| > ;. We
note that the right-hand side of (14) is independent ahd
g, even thoughl; may depend on ande. The former, while
restrictive, is necessiated by the fact thais unavailable
for feedback, and is justified since (14) is only required
to hold over a compact set. The latter is done purely for
convenience, and is not restrictive, since, as we shall see later
on, |le|| = O(max p;),so that the contribution of is not

L

significant, provided the constants are sufficiently small.

4.2. Output feedback design

The output feedback design uses the following high-gain
observer to estimate :

A A i i ; :
&=l g val(e— &)/, 1<j<p — 1,

)

ey, =0ty (e — &)/ ()", (15)

whereg; > 0 is adesign parameter, and the positive constants
o, are chosen such that the roots/éf + YL P

oc;')__li + o}, =0 have negative real parts. In (15)/, is an

later. Furthermore, as was done in Section 2, the ideal SMC astimate of' the (j — 1)th derivative ofe! . Let
J' '

(9) is modified to the continuous control

u=A"e, V[-F(e,v, @) +v],

v = _ﬁi (6, v, W) SaKSi/,Ul'). (12)
Inside the boundary layefis;| <y;}, ¢; = Z?‘;llk;e; +

; def ; « P o
e, = e,, Where the “augmented erroej, is a linear com-
1

bination of the tracking erro&"l.and its derivatives up to
order(pi — 1). At equilibrium, ¢/, = 0, which implies that

plil
Si=kboi + ) Kieh + ¢, (16)
j=1

be the corresponding estimatespf* whereg; is now the
output of

Gi = —kjo; + p; Saksi/u;). (17)

¢) = 0. Hence, Eqg. (11) represents a conditional integra- We replacee and s with their estimates and s in the
tor, which provides integral action only inside the boundary control (12), and saturate the control outside a compact

layer. In the present case, the resulting equatios;foan be
written as

.S",' =A,-(z,e,w, g, d, II})

— iz, e+v,d);(e, v, ) sai(s; /), (13)

where 4() = {4;()} = F() — TOF() + AC) 8¢) +
{ko(—kgoi + p; sals; /u;)}. In order to specify how; (-) is
chosen, we make the following standard assumption.

Assumption 6. Let

A (-
ﬁ‘ <g;le,v,m), 1<i<m
Vi(')

for some known functionsg; (-), where the maximization is
taken over all(z, e, 0) € Y., d € Dy, v € A, w € Ap, and
weWw.

max (14)

The compact se¥, will be defined in the next section

set of interest. In particular, rewrite the control (12) as
u; = Yi(e, v, w, 0) where Y (-) = A~1(-)[— F(-) + v], with

vi = —f;() satis;/y;). Inside ¥, e belongs toA,, a
compact subset oR”. Let S; be the maximum value of
|7; (e, v, @, 0)|, where the maximization is taken over all
ve A me A, loj|<w/khande € A, whereA,, is a
compact set that containg, in its interior. The controk is
then taken as

u; = S; sal?7; (é, Vv, @, 0)/51'). (18)

In summary, the output feedback controller is given by
(15)—(18), where

Y@, v, @ 0)=A"L1E v[-F@,v, o) +v],
vi = —f;(e, v, m) sals; /),

Bi(e,v, m) =g;(e,v,®) +q;. (19)

4We can takeéi as the estimate provided by (15) or the measured

using Lyapunov functions, and will serve as an estimate outpute?.
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To complete the controller design, we must specify how
andeg; are chosen. The parametersresult from replacing
an ideal SMC with its continuous approximation, and hence
should be chosen “sufficiently small” to recover the perfor-
mance of the ideal SMC. Similarly, in order for the output-
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A () = kb [sats; /) — satsi /)]

m
+ Z ajj(z,e+v,d)
Jj=1
x [S; salY;(e,v,m, 6)/S;) — Tjle, v, w, 0)]

feedback controller to recover the performance under state-

feedback, the high-gain observer parametgrshould also
be chosen “sufficiently small”. Therefore, one might view
u; ande; as tuning parameters and first redygegradually

until the transient response under partial state feedback is™/

close enough to the ideal SMC, and then reduagadually

until the transient response under output feedback is close
enough to that under state feedback. The asymptotic theory

of the next section guarantees that this tuning procedure will
work.

5. Closed-loop analysis

Fori=1,....m, define{i R"i‘l by ()T =[({)T eA N

and the scaled estimation errof = {goj.} is defined by

ol = (e, — &) /(e .

The matrices; andLL; are Hurwitz by design. Let={yx;}
ande = {g;}.

5.1. Boundedness and convergence

The stability analysis shares many details wihalil
(2000) and Mahmoud and Khalil (1996) The main dif-
ference between the present analysis and its counterparts in
Khalil (2000) and Mahmoud and Khalil (1996js treating
o; and{’ separately, while irkhalil (2000) and Mahmoud

perturbed form

= — kboi + 1 sal(s;i — Ni(e)@')/w),
(=Ml + Ci(si — Khoy),
si=Ai(z,e, @, 0,d, W)
- ’yi (Zv e+ v, d) ﬁi(ev v, w) Sa(Sl/:ul) + Al*()s
2 - ¢(Za e + va d)a

G@ =Ligp +&Bi | bi(-)— ri(pi)

+Zaij(')(1/lj +0;0) |,

(20)
j=1
where
0 I 0 0
0 0 1 0 0
M; = : : , Ci=| ],
0 ‘ e 0 1 0
kK —ki 4 1
—oc"l 1 0
: 0 1 0
L= : S
SRS 0 1
—oc’pl_ 0 0
0 2
2.Pi—
“g.
Nie={ " |
kpi_lgl'

As in Khalil (2000) and Mahmoud and Khalil (1996)it is

both convenient as well as instructive to present the anal-
ysis in two parts. In the first part, we show that the con-
troller parameters can be chosen to bring the trajectories to
an arbitrarily small neighborhood of an equilibrium point, at
which the tracking error is zero. In the second part, we show
that the controller parameters can be further tuned to ensure
asymptotic stabilization of this equilibrium point. To show
the first part, we define appropriate Lyapunov functions for
each of the five components of (20), i.,,0;, (', z, and¢’,

and use them to construct a compact set of intefest X,

that serves as an estimate of the region of attraction. We
show that this set is positively invariant for a suitable choice
of the controller parameters and that trajectories starting in
the interior of this set will eventually reach a “small” set
¥, x X that shrinks to the origin afullcand||¢]|« tend to
zero To that end, lep; = Q] > 0 andP; = P, > 0 be the
solutions of the Lyapunov equation® M; + Ml Q; =
andP;L; + Ll.TPi = —1, respectively. For the componem;s

g, {, andg, we use the quadratic Lyapunov functions

def def def
visnB12 veen Bl viEHET ol
and
V(p((p)def i Pi(/)i,

respectively, and we use the Lyapunov functésir, z, d)

for z. The sets¥. and 2, are defined byV. d_efQ X Qe

5We omit most of the details that are similar kdalil (2000) and
Mahmoud and Khalil (1996)A complete account of such details can be
found in Seshagiri (2003)



S. Seshagiri, H.K. Khalil / Automatica 41 (2005) 43—-54 51

d—ef(n Q) 2,
LUV < + 1)1 Vi) <AeZ,
VG(O'i)gz(,“i/ko) 1

Qe V.t 2. d) < dallo + IallcI)).

2, B (o) <),

def
[TL, 2, where

(21)

¢i > ; is a positive constanks=/207 is a clasK function,
andy;, I3, andd; are positive constants independentof
andg; to be specified shortly.

Before we show tha¥,. x X, serves as an estimate of the
region of attraction, we need to ensure thate, o) € ¥,
implies that(z, ¢) € Z x E. It can be verified thate| </3]|c||
in Q., wherelz is a positive constant independent af
Using this fact, along with Assumption 4¢(i), it follows that
choosingce to ensure thats||c|| < min{ly, }Ql(il(lz)) —lo}
guarantees that, ¢) € Z x E for all (z, e, 0) € V..

Since the boundaries of the s#t. x X2, are formed of
Lyapunov surfaces, to show that this set is positively invari-

ant, it suffices to show that the derivatives of the correspond-
ing Lyapunov functions are non-positive on the respective

boundaries. Using the fact that| <c;, |o~,~|<,ui/k6 in¥,,
and the inequality

VES = IC12 4+ 2180 1QiCill Usil + kgloi]).

it is easy to show thaﬂ'/4<0 on the boundaryV; =
(ci + )2 for the choicey; = 410;C; |ma(Q1). Since
0i6: < — kbloi|? + /,4,|al| it follows that V<0 on the
boundaryV = z(ﬂi/ko) . Next, we consider thg equa-
tion, which differs from (13) only in the term’. Inside
e, o'l = O(e), which can be used to show that, for
sufficiently smalle;, the control is not saturated inside
Y. x X,.Using this, along with; =§; + N; (¢;)¢', it can be
shown that4} is O(||¢]l«) inside P x X,. Lete; be small
enough that4; (-)| <yog;. On the boundary? = %clz we
have sats; /u;) = sgn(s;), so that

= Isilly; OB () — 14i O] = 147 O]

Using (14), the definition of;, and the fact that
|47 ()| <7yoqi, it follows that Vl:‘<0 on the boundary
V$ = 3c2. Assumption 4(i) shows tha, <0 on the bound-
ary V, = A4(lp + I3]/c|)). Finally, using the inequality

g2

i

V,-(pg +2 o'l 1M B; |l E;,
where £; = max|b;(-) — /" + X" 1ai; (s + 0,1,
with the maximization taken over alk, e, 0) € V., d €
Dy, ve A we Ay, we W,andp € X, it follows
that V¥ <0 on the boundaryv“’ = ¢29; for the choice
9 >4 | M; Bi 1% dmax(M;) B 55 HencelP x X, is positively
invariant.

Our next step is to show that for any bound&@), and
any(z(0), e(0), a(0)) € Qp, where O< b; < ¢;, it is possible

to choose; such that the trajectory enters the $&tx 2, in
finite time. Since, for allz, e, o) € Q., the right-hand side
of the slow equation of (20) is bounded uniformlygirfor all
(z(0), e(0), 0(0)) € Q, there is a finite timdp, independent
of ¢, such that for all &< Ty, (z(2),e(?),a()) € Q..
During this interval, we have

VI —d o' for V(') = e

for some positive constamtp. This inequality can be used to
show thaty () entersX,. within the time intervalO, T (¢)],
where lim._ o7 (¢) = 0 (Atassi & Khalil, 1999. Therefore,
by choosings; small enough we can ensure thate) < To.
The argument that the s#f, x X, is positively invariant

can be extended to show that trajectories starting inside it

reach the se¥, x X, in finite time, where

a"ﬂd—e*fz s AVa(t, 2.d) < Ja(lltlloor ™))

df
= H{(e oi) : Isil <p (1= &),

|o,-|<ﬁ, V() <16u3y;),

0

m

[[te'" € R? : v (@) <lelZt:).
i=1

0<¢; < 1is chosen such that max <g¢;/(25;) — gi, & IS
small enough thatV; (¢;) ¢’ | <¢; 1;, andr* > o*, wherex*

is a positive constant such thiat]| < || ullco* foralle € Q.
An argument similar to the one f&¥, x 2, can be used to
show that¥, x X is positively invariant. This completes
the first part of the analysis.

To prove the second part, note that when=0, v =0
andw = 0, the system has a unique equilibrium paint=
0,e=0,0; =G;, ¢ =0). Lets; = k)d; be the correspond-
ing equilibrium value ofs;, ¢ = ¢ — g, ands = s — 5. By
the converse Lyapunov theoreidhalil, 2002, Assumption
4(ii) implies that in some neighborhood of= 0 there is a
Lyapunov functionW, (z, d) that satisfies

@W,/02)¢(z,0,d) < — 7]1z)12,

def

Y, = (22)

IslzlIP< W, <Jslizll%,
and
[ow. /oz|| < Zslizll

for some positive constanfs; to 4g, independent ofl. Let
O=DblockdiadQ1, ..., O, 1,andP=blockdiag P, ..., Py].
Using

V =W,z d)+ 2ol O+ 3101511

+ 3512+ ¢ Po
as a Lyapunov function candidate, whékg 419> 0, it can
be verified that, by first takingg large enough, theriig

large enough, therullo small enough, and lastlye| o
small enoughy satisfies an inequality of the form

V< =21V + 2V VIOl + ol + 1B@]) - (23)



52

for some positive constanfgi and 12, uniformly in u and
. Sincew, v(t), w(t) — 0 ast — oo, the preceding in-

equality can be used to show that all trajectories approach

the equilibrium pointz =0, ¢ =0, 0 =7, ¢ = 0) asr tends
to infinity. If all assumptions hold globally, the controller

can achieve semiglobal regulation. We summarize our con-

clusions in the following theorem.

Theorem 1. Suppose Assumptiofishrough6 are satisfied
the constants;, y;, 9;, andlz are chosen as described be-
fore, ¢(0) is boundedand the initial state$z(0), (0), 5(0))
belong to the se¥;,, where0<b; <c¢;. Then there ex-
ists u* > 0, and for eachu with ||ulle € (O, 1*], there ex-
ists &* = &*(w) >0, such thatfor i, € (0, u*] andg; €
(0, &*], all state variables of the closed-loop system un-
der the output feedback controllét5)—(19)are bounded
and lim;_, o e(¢) = 0. If, in addition all the assumptions
hold globally, then given compact sety ¢ R" and M C
RP, the foregoing conclusion holds for alk(0), e(0)) €

N and é(0) € M, provided ¥, is chosen large enough to
include N.

5.2. Performance

We saw in Section 2, via simulation, that the output feed-
back CSMC with a conditional integrator recovers the per-
formance of the state-feedback ideal SMC. The following
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XT(t) and X*(¢) in the time intervak >r;. Let
=i« Is] ()1 <py) U Li = 57 (0) = 0.

Since X T(12) = X*(t0), Is (1) — s} (t0)| = |k o] (1) | < gy
Using this, along with the definition of; and the fact
that |sl.T(t)| and|s’(r)| monotonically converge to the posi-
tively invariant set'e‘,|sl.T | < u;} and{0}, respectively, it can be
shown that for alk € I3, |sl.T(t) — 57 ()| <3y; forall t >n.

It follows that for alli € I, s, (1) — s7(t) = O (i;) V 1 >0.

Since the equations faf ' and'™ are identical stable lin-
ear equations, driven by inpuk§ — kf) alT and; respec-
tively, where|k{, a;r| <y; and sl.T — 57 = O(y;), continuity
of solutions on the infinite time intervakKpalil, 2002, The-
orem 9.} can be used to show that for sufficiently smal|
¢ = 6 () = o) and hence" (1) — ¢* (1) = O(uy)
for all i € I1 andt>r. In particular, if Iy = I, then
e’ (1) — e*(t) = O(Jlullo) for all =11, which can then be
used to show that'(r) — z*(t) = O (|| plleo) for all ¢ >11, so
that the result follows.
If 11 # Iy, letr € (11, 00) = min{t;, t5), where

= min {r:|s]@)<y)} and
iely\I1 !

€y

* H . k

ty = min {t:[s;(¢)] =0}
iely\Ih

LetXI be the part of the staté’ with the components’, i €

theorem shows that the closed-loop trajectories under thel1, deleted and(7 be the corresponding part af*. Fori €

two controllers can be made arbitrarily close.

Theorem 2. Let X = (z,¢) be part of the state of the
closed-loop system f@6) under the output feedback CSMC
(15)—(19),and X* = (z*, €*) be the state of the closed-loop
system under the state feedback ideal SMC coffpand
(9), with X (0) = X*(0). Then under the hypotheses of The-
orem1, for everyt > 0, there exist* > 0, and for eachu
with || ulle € (0, u*], there exists™* = ¢*(u) > 0, such that
for u; € (0, p*Tande; € (0, &, | X (1) —X* ()| <t V 1 >0.

Proof. We prove the theorem in two parts. First, we look

at the trajectories under state feedback CSMC with the con-

ditional integrator. Letx” = (z, ¢") be part of the state
of the closed-loop system under the control (10)—(12), with
XT(0) = X*(0). For this case, we show that, for sufficiently
smalli;, XT(r) — X*(t) = O(||ullo) ¥ £=0. Lets™ ands*

be the corresponding sliding surface functions of the two
systems. Letly, ={1,...,m} andr = min{tir, 17}, where

t . t
tp=minf{z : |s; (1)|<y;} and
iely

= min (¢ : |5 (1)] = 0}.

If 11 >0, using sa(ty;(t)/u,-) =sgn(s/ (1)) Y 0<r <1y, itcan
be shown thak T(r) = X*(r) V 0<¢ <r1. Next, we consider

Iy \ 11, we have se(ts;r/ui)zsgr(s;*)zsign(s;) V1<t <ty

so that, during this period, the right-hand side of the equa-
tions for XI and XJ are Lipschitz functions of their ar-
guments. \ﬁewingXir and X as states of systems driven
by inputs (al.T,eiT) and ¢'* respectively,i € Iy, and us-
ing the fact thatlk} o!| <y, and et —e* = 0(y), the
results of Khalil, 2002, Theorem 3) dealing with conti-
nuity of solutions on compact time-intervals, can be used
to show that, for sufficiently small;, XI(z) - Xi(t) =
O(Jlulleo) V 11 <t <t2.Using this, the previous arguments
involving (Khalil, 2002, Theorem 9)Ican then be repeated
to show that, for sufficiently small, e"T(t) — () =
O(y;) Y t=tand alli € I, where

L={iely\h: SiT(tz)I N
x Ufi € Iy\11: 5] (1) = 0}.

In particular, if Iy U I» = Iy, then ef(r) — ¢*(t) =
O(||tlloo) VY t =12, which can then be used to show that
1) =25 (1) = 0(||llec) ¥ 1 =10, SO that the result follows.
If 11U Io # Iy, the result follows by an inductive argument
that uses Khalil, 2002, Theorem 3)and Khalil, 2002,
Theorem 9.1 alternately. In particular, this completes the
first part of the proof, which shows that there exigts> 0
such thaf| il € (0, *] = | XT (1) = X*(1)]| <T/2 ¥ 1 >0.

In the second part of the proof, we use the idea in
Atassi and Khalil (1999)o show that the trajectorieX
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of the system under output feedback approach the trajec-

tories XT under state feedback as— 0. In particular,
we show that there exists® = ¢*(u) such that for all

g <&, |IX (1) — XT(1)||<t/2V r>0. This is done by di-
viding the time interval[0, co) into three sub-intervals
[0, T(e)], [T (e), T3] and[T3, o0) and showing that the in-
equality | X (1) — XT(r)| <t/2 holds over each of these
sub-intervals. From asymptotic stability of the two systems,
we know that there exists a finite tin¥#g, independent of

¢, such that| X (r) — XT (1) <t/2V t >T3. Also, as men-
tioned in Section 5.1, there is a time interv@, T'(¢)],
with T'(¢) — 0 ase — 0, during which the fast variable
decays to am(Jl¢|l«) value. It can be shown that global
boundedness of the controls implies that over this interval,
I1X (@) — XT(r)]| <oT (¢),for some positive constanig
that is independent of. SinceT(¢) — 0 ase¢ — 0, for
small enough|e|leo, X (1) — XT(®)|<7/2V 1 € [0, T (¢)].
Lastly, noting thatX (T'(¢)) — XT(T'(¢)) - 0 as¢ — 0
and ¢ is O(Jl¢llo), and using the continuous depen-
dence of the solutions of differential equations on compact
time intervals Khalil, 2002, Theorem 3)}4 one can show
that it is possible to choose to satisfy the inequality
1X@) - XTI < 7/2 over the time intervdlT (¢), T3]. This
shows that| X (1) — XT(r)||<t/2V 1 >0. The result then
follows from the triangle inequality.

6. Universal integral regulator

u

(24)

koo + e1

For SISO systems, the flexibility that is available in the
choice of the functiong' and can be exploited to simplify
the controller to

— k sat(s/u)

. Sat(koa—f-klel +koéo + - - +ép> .

U

As mentioned in Section 2, this particular design, while hav-
ing a simple structure, is also natural since the control is
required to be bounded. It is clear from (24) that the only
precise knowledge about the plant that is used is its relative
degree and the sign of its high-frequency gaipL’;._lh.
This “universal” design was first presenteddhalil (2000),
for the conventional integrator, where it was shown that the
structure of the universal integral regulator coincides with
the classical Pl and PID controllers, followed by saturation,
for relative degree one and two plants, respectively.

In the present case, when= 1, the integrator equation
can be rewritten ag = e1 + (u/k)(@ — u), where
u:—ksat<m> and ﬁ:—k( )

ju I
The termz is the “unsaturated version” of the contiglso
that the controller (24) has the structure showifrig. 5. It
is a PI controller with “anti-windup” ertik & Ross, 196y,
followed by saturation.
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Kp

<

Plant

v

+

int

Fig. 5. Universal regulator for relative degree one systems : PI controller
with anti-windup, followed by saturationk; = kkg/u, Kp = k/u, and
L=yp/k.

In the relative degreg case, the integrator equation can be
rewritten asr=e,+(u/ k) (i—u), Whereea=2§;i kjej+ep
is the augmented error that was defined in Section 4. It is
clear from the expression far that the anti-windup struc-
ture ofFig. 5is retained in this case as well. The control (24)
now represents a “PH>! controller”, with a conditional
(anti-windup) integrator, followed by saturation. This inter-
pretation of the conditional integrator as a specially tuned
version of an anti-windup scheme for the universal integral
regulator design was presented in a preliminary version of
this paper $eshagiri & Khalil, 200}.

7. Conclusion

We have presented a new approach to introducing integral
action in the control of nonlinear systems, which captures
the regional and semi-global asymptotic regulation results
of Khalil (2000) and Mahmoud and Khalil (1996)while
improving the transient response. In the new approach, the
integrator is designed in such a way that it provides inte-
gral action only “conditionally”, effectively eliminating the
performance degradation. The improvement in performance
is demonstrated analytically by showing that the output-
feedback continuous sliding mode controller, with condi-
tional integrator, recovers the performance of an ideal state-
feedback sliding mode controller, without integral action,
as the controller parametegs ande; tend to zero. In view
of this result, the control design can start with the ideal
state-feedback sliding-mode control, where the parameters
of the sliding surface =0 are chosen to meet the tran-
sient response specifications. Then, integral action is intro-
duced by modifying; to s; =k2a; + 57, with 6; = —k 0, +
w; salis; /u;). The discontinuous term sgif) in the ideal
SMC is replaced by sé/u;). The parameterg; are re-
duced gradually until the transient response is close enough
to the ideal case. Finally, a high-gain observer is brought in
to estimate the derivatives of the tracking error. The observer
parameters; are gradually reduced until the transient per-
formance is close enough to the ideal case. Note that in the
ideal SMC design, the inequality that corresponds to (14)
will have 4; terms that do not account for the variables.
However, since; is O (y;), the;’s of the ideal SMC design
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will still work in the presence of the conditional integrator,
provided theu;’s are sufficiently small.

While modifying the integral control designs #&halil
(2000)andMahmoud and Khalil (1996from conventional
to conditional integrators, we have also extended the prob-
lem statement to MIMO systems and allowed time-varying
matched disturbances. Moreover, we proved that the trajecto-
ries under output feedback approach those under state feed
back ase — 0. This property also holds fd€halil (2000)
andMahmoud and Khalil (1996)ut was not proved there.

Further work is needed in understanding how to fine-
tune the controller parameters. For example, it is not hard
to see that, when the level of the control is fixed a priori,
there is a trade-off between the region of attraction and the
speed of convergence, which is dictated by the choice of the
sliding-surface parameters. Identifying such trade-offs will
give insight into how the parameters can be tuned to achieve

specific objectives, and also identify possible limitations on

the achievable performance.
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