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Abstract

This paper is on the design of robust output feedback integral control for minimum-phase nonlinear systems with a well-defined relative
degree. Previous work has shown how to design such controllers to achieve asymptotic regulation by a two-step process. First, robust
control is designed to bring the trajectories to a small neighborhood of an equilibrium point. Within this neighborhood, the control then
acts as a high-gain feedback that stabilizes the equilibrium point.
The asymptotic regulation achieved by integral action happens at the expense of degrading the transient performance. In this paper,

we present an approach to improve the transient performance. The control design is a continuous sliding mode control with integral
action. However, the integrator is introduced in such a way that it provides integral action only “conditionally”, effectively eliminating the
performance degradation. There are two main results in the paper: the first is asymptotic regulation and the second confirms the transient
performance improvement by showing that the output feedback continuous sliding-mode control with integral action can be tuned to
recover the performance of a state feedback ideal sliding mode control without integral action.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider the problem of robust output regulation for
multi-input multi-output (MIMO) minimum-phase nonlin-
ear systems transformable into the normal form, uniformly
in a set of constant disturbances and uncertain parameters.
For this class of systems, robust continuous feedback con-
trol can be designed using techniques like high-gain feed-
back, min–max control, or sliding-mode control (SMC), to
ensure convergence of the tracking error to a neighborhood
of the origin, while rejecting bounded disturbances. How-
ever, making the error small requires the use of high-gain
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feedback near the origin. Typically, the steady-state error is
of an order inversely proportional to the high-gain. To get
smaller errors, it is therefore necessary to increase the gain,
which is undesirable because it can excite unmodeled high-
frequency dynamics. Moreover, in the case of min–max and
sliding-mode control, where a continuous controller is ob-
tained by approximating a discontinuous one, trying to make
the approximation arbitrarily close results in chattering due
to delays or unmodeled dynamics (Young, Utkin, &Ozguner,
1999). There is thus a trade-off between tracking accuracy
and robustness to high-frequency unmodeled dynamics.
For constant or eventually constant exogenous signals, we

can achieve zero steady-state error by introducing integral
action in the controller (Byrnes, Priscoli, & Isidori, 1997;
Huang & Rugh, 1992; Isidori, 1997; Isidori & Byrnes, 1990;
Khalil, 1994, 2000; Mahmoud & Khalil, 1996). Integral con-
trol creates an equilibrium point at which the tracking error
is zero. InKhalil (2000) andMahmoud and Khalil (1996),
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this (unknown) equilibrium point is stabilized using the fol-
lowing two-step design philosophy. First, robust control is
designed to bring the trajectories to a small neighborhood of
the equilibrium point. Within this neighborhood, the control
acts as a high-gain feedback that stabilizes the equilibrium
point. WhileMahmoud and Khalil (1996)accomplishes this
through continuous min–max control,Khalil (2000) uses
continuous SMC (CSMC) to design the controller as a uni-
versal one, where the only precise information about the
plant that is used is its relative degree and the sign of its
high-frequency gain.
The asymptotic regulation achieved by integral action

happens at the expense of degrading the transient per-
formance. Even in the absence of control saturation, in-
tegral action makes the response more oscillatory. When
the control saturates, integrator build-up results, causing
large overshoots and settling times. We present a new
approach for introducing integral action to alleviate this
transient performance degradation. This is done within a
CSMC design framework. The integrator is modified to
provide integral action only inside the boundary layer, i.e.,
only “conditionally”. The improvement in transient per-
formance is shown analytically by proving that the output
feedback CSMC recovers the performance of a state feed-
back ideal SMC. Preliminary results were presented in
Sheshagiri and Khalil(2001,2002).
The rest of this paper is organized as follows. In Section

2, we motivate the key points of the design and results via an
example. In Section 3, we describe the system under consid-
eration, and state our assumptions and the control objective.
The control design is presented in Section 4, while the anal-
ysis of the closed-loop system and performance recovery of
an ideal SMC design are shown in Section 5. The specializa-
tion to the universal integral regulator design (Khalil, 2000)
is done in Section 6. Finally, our conclusions are presented
in Section 7.

2. Motivating example

Consider the second-order system

ẋ1 = x2,

ẋ2 = ax21 + bx2 + cx32 + u,

y = x1. (1)

The constantsa, b andc are assumed to be unknown, but
bounded with known bounds. The control objective is to
regulate the outputy to a constant valuer. In ideal SMC
design, the sliding surface can be chosen ass = k1e1 + e2,
wheree1 = y − r, e2 = ė1, and k1>0. This ensures that
when motion is constrained tos = 0, the errore1 converges
asymptotically to zero. Differentiating, one obtains

ṡ = k1e2 + a(e1 + r)2 + be2 + ce32 + u.

Finite-time convergence to, and invariance of,s = 0 can be
achieved by choosingu = u1 + u2, where the equivalent

controlu1 is designed to cancel known or nominal terms in
the expression foṙs and can be taken as

u1 = −k1e2 − â(e1 + r)2 − b̂e2 − ĉe32,

whereâ, b̂, andĉ are nominal values ofa, b, andc, respec-
tively. The switching controlu2 is designed to handle the
uncertain terms in the resulting expression forṡ and can be
taken as

u2 = −[�(e1 + r)2 + �|e2| + �|e2|3 + �] sgn(s),
where the positive constants�, �, and� are upper bounds on
|a − â|, |b − b̂|, and|c − ĉ|, respectively,�>0, and sgn(·)
is the signum function, defined by

sgn(u) =
{
1, if u>0,
−1, if u<0.

This choice ensures thats converges to zero in finite time
and stays there for all future time, which guarantees thate1
ande2 converge to zero asymptotically. However, as is well-
known, this design suffers from chattering in the presence
of switching nonidealities or unmodeled high-frequency dy-
namics. Various approaches have been proposed to reduce
or eliminate chattering, see, for example (Bartolini, Ferrara,
Usai, & Utkin (2000); Levant & Fridman (2002)) and the
references therein. The most common approach1 is to re-
place the discontinuous term sgn(s) by its continuous ap-
proximation sat(s/�), where sat(·) is the standard saturation
function, defined by

sat(u) =
{
u, if |u|�1,
sgn(u), if |u|>1.

This method can eliminate chattering but often at the cost
of a non-zero steady-state error, that is proportional to�.
In order to obtain smaller errors, it is therefore necessary to
make� smaller, which in turn, leads to chattering again.
It is possible to recover the asymptotic regulation achieved

by ideal SMC by using integral control within a CSMC set-
ting. Integral action is conventionally introduced by aug-
menting the system with an integrator driven by the track-
ing error, i.e.,�̇ = e1. In the case of the particular example,
suppose we do this and also modify the sliding surface to
s = k0� + k1e1 + e2, where nowk0 and k1 are chosen to
ensure that the polynomial�2 + k1� + k0 is Hurwitz, which
guarantees that when motion is restricted tos = 0, the error
e1 converges asymptotically to zero. The previous steps can
then be repeated to designu. In particular, we take

u1 = −k0e1 − k1e2 − â(e1 + r)2 − b̂e2 − ĉe32,

u2 = −[�(e1 + r)2 + �|e2| + �|e2|3 + �] sat(s/�).
1Another popular approach, discussed extensively inBartolini et al.

(2000) and Levant and Fridman (2002), is that of higher order sliding
modes (HOSM), where the discontinuous control is relegated to higher-
order derivatives of the input. While the presentation inLevant and
Fridman (2002)is restricted to SISO systems, MIMO systems are con-
sidered inBartolini et al. (2000), but under the assumption of full state
feedback.
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Fig. 1. Asymptotic error regulation with improved transient performance
using the “conditional integrator”.

The presence of integral action guarantees that there is an
equilibrium point, withinO(�) of the origin, at whiche1=0.
Now, to achieve asymptotic regulation we do not need� to
be arbitrarily small; we only need it to be “small enough”
to stabilize the equilibrium point.2 However, while integral
control, as designed above, can achieve asymptotic regula-
tion, the transient response deteriorates when compared to
that under ideal SMC.
To address the transient response degradation with con-

ventional integral control, we modify the integrator design
as follows. Lets be as before, i.e.,s = k0� + k1e1 + e2,
but nowk0>0 is arbitrary,k1>0 is retained from the ideal
SMC design, and� is the output of

�̇ = −k0� + � sat(s/�). (2)

To see the relation of (2) to integral control, observe that
inside the boundary layer{|s|��}, (2) reduces tȯ�=k1e1+
e2 = k1e1 + ė1, which implies thate1 = 0 at equilibrium.
Thus (2) represents a “conditional integrator” that provides
integral action only inside the boundary layer. The control
is taken as in the continuous approximation of ideal SMC,
i.e.,u = u1 + u2, where

u1 = −k1e2 − â(e1 + r)2 − b̂e2 − ĉe32,

u2 = −[�(e1 + r)2 + �|e2| + �|e2|3 + �] sat(s/�).
The simulation results are shown inFig. 1. Numerical values
used in the simulation area = 0.6, b = 2.5, c = 0.1, â = 1,
b̂=2, ĉ=0, r =1, �=0.5, �=0.6, �=0.1, �=1, �=0.1,
andx1(0)=x2(0)=�(0)=0. The constantk1=5 in the ideal
SMC case, its continuous approximation, and the conditional
integrator design, withk0 = 1 in the conditional integrator
design. The values ofk0 andk1 in the conventional integrator
design are taken as 25 and 10, respectively. The following
observations can be made fromFig. 1: (i) the conventional

2We naturally expect this fact to be of consequence when there are
switching nonidealities, and will show so through simulation later on.
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Fig. 2. Performance recovery under the output feedback conditional inte-
grator design.

integral control recovers the asymptotic regulation that is
lost in the continuous approximation of ideal SMC (without
integral control), but at the expense of degraded transient
performance; in particular, the error convergence to zero is
sluggish; (ii) the conditional integral design also achieves the
task of asymptotic regulation, but without any degradation in
transient performance; in fact, in the subplot for the transient
behavior, the responses of the ideal SMC and the conditional
integrator design are almost indistinguishable.
The transient performance recovery property of the con-

ditional integrator design is also retained under output feed-
back, when the statee2 is replaced by its estimatêe2 ob-
tained from the high-gain observer (HGO)

˙̂e1 = ê2 + �1(e1 − ê1)/�,
˙̂e2 = �2(e1 − ê1)/�2.

The positive constants�1 and�2 are chosen to assign the
roots of theHurwitz polynomial�2+�1�+�2, and� is chosen
sufficiently small. In order to take care of the peaking phe-
nomenon associated with high-gain observers (Esfandiari &
Khalil, 1992), the control is saturated outside a compact
set of interest. Simulation results are shown inFig. 2, with
�1 = 15, �2 = 50, ê1(0) = ê2(0) = 0, and a saturation level
of 50 for the control. Performance recovery is shown in two
steps : (i) as� tends to zero, the response under state feed-
back CSMC approaches ideal SMC, (ii) for fixed�, the re-
sponse under the output feedback CSMC approaches that
under state feedback CSMC as� tends to zero. For the gen-
eral case, we will prove in Section 5 that the closed-loop
trajectories under output feedback CSMC with the condi-
tional integrator approach those of the state feedback ideal
SMC as�, � tend to zero.
The previous discussion showed how the design of the

controller proceeds in general. Since our design requires
that the control be bounded, a possible simplification of
the controller is to choose the equivalent control to be
zero and the coefficient of the switching component to be
constant, i.e.,

u = −k sat(ŝ/�).
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Since, in practical applications, a constraint on the control
magnitude appears naturally as an actuator limit, one might
simply choosek as themaximum permissible control magni-
tude. Since the only precise information about the plant that
such a controller uses is its relative degree and the sign of its
high-frequency gain, it is referred to as auniversal integral
regulator (Khalil, 2000). We will discuss the universal inte-
gral regulator design further in Section 6 and show that the
integrator modification (2) can be interpreted, in this case,
as a special choice of a traditional anti-windup scheme.
To continue with this discussion, note that the control

magnitude required to accommodate a step change inr in-
creases as the step increases. One way to deal with this when
the control is constrained with an a priori specified bound is
through trajectory planning schemes.3 In order to illustrate
this, we consider the following modification to the previous
simulations. The control is replaced byu = −k sat(ŝ/�),
with k = 50. All other values are retained from the previous
simulations, exceptr, which is increased to 1.5. One can
verify, for example, by simulation, that the sliding condition
is not satisfied. However, when the constant referencer is
“smoothed” by passing it through the filter 1/(	s+1)2, with
	=0.5, the control magnitude is now sufficient to overcome
the uncertain terms and the sliding condition is satisfied.
Furthermore, sinces(0) = 0, the sliding condition ensures
that s stays inside the boundary layer for all future time,
which along withe1(0) = 0 implies that the errore1 itself
is small for all time, under both the conventional as well
as the conditional integrator designs. When the trajectory
stays inside the boundary layer during the transient period,
the conditional integrator acts as an integrator all the time;
hence, we do not expect any significant difference between
the transient responses of the two designs. The advantage
of the conditional integrator design becomes clear when we
consider an unexpected disturbance that causes an abrupt
change in the state of the system. For example, consider an
additive impulse-like disturbanced(t) of magnitude 75 act-
ing at the input of the system betweent = 5 and 5.1385 s.
The response of the two designs are shown inFig. 3. We see
from the plot on the left that while the system responses are
almost identical (indistinguishable in that plot) before the
onset of the disturbance, the response to the disturbance is
significantly degraded with the conventional integrator de-
sign. The response before the disturbance is seen better in
the plot on the right.
Lastly, before we present the system description and the

problem statement for the general case, we make a small
digression. In order to highlight the issue of chattering, we
repeat the first two simulations under the assumption that
a time delay ofT = 0.01 s precedes the control input. The
results are shown inFig. 4.
We see from the figure that there is chattering in the con-

trol and that the property of asymptotic regulation is lost with

3A more detailed discussion on this issue can be found in the next
section.
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Fig. 3. Effect of disturbance on the conventional and the conditional
integrator designs.

ideal SMC. Replacing the discontinuous control with its con-
tinuous approximation eliminates chattering when� = 0.1,
but at the expense of a relatively large non-zero steady-state
error. Reducing� to 0.01 results in chattering again. The
non-zero steady-state error can be handled by the conditional
integrator design, where as mentioned earlier, the value of
� does not have to be made arbitrarily small and hence we
can expect that this design will not suffer from chattering.
This is validated by the simulation results ofFig. 4. While
we have included a simulation with a time delay to highlight
a merit of this approach, we do not present any analysis for
this case and shall not dwell on it further.

3. Problem statement

Consider an MIMO nonlinear system, modeled by

ẋ = f (x, 
) +
m∑
i=1

gi(x, 
)[ui + �i (x, 
, w)],

yi = hi(x, 
), 1� i�m, (3)

wherex ∈ Rn is the state,u ∈ Rm is the control input,
y ∈ Rm is the output,
 is a vector of unknown constant
parameters that belongs to a compact set� ⊂ Rp, w(t) is
a piecewise continuous exogenous signal that belongs to a
compact setW ⊂ Rq , f (·) andgi(·) are smooth vector fields
onD

def= Dx × �, whereDx is an open connected subset of
Rn, hi(·) are smooth functions onD, and the disturbances
�i (·) are continuous functions onD × W . The formulation
in (3) allows for matched disturbances that may depend on
time-varying exogenous signals. We will specify a restric-
tion onw shortly, when we are ready to state the control
objective. Our first assumption is that the disturbance-free
system (3) has a well-defined normal form, possibly with
zero dynamics (Isidori, 1995).

Assumption 1. The systemẋ = f (x, 
) + g(x, 
)u, y =
h(x, 
) has uniform vector relative degree{�1,�2, . . . ,�m}
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in Dx , i.e.,

Lgj L
k
f hi(x) = 0 for 0�k��i − 2,1� i�m,1�j�m

andA(x, 
) def={Lgj L
�i−1
f hi} is nonsingular for allx ∈ Dx

and
 ∈ �. Furthermore, the distribution span{g1, . . . , gm}
is involutive, and there is a change of variables
[

�

]
= T (x, 
) =

[
T1(x, 
)
T2(x, 
)

]
,  ∈ Rn−�, � ∈ R�, (4)

where�={�i}, with �ij =L
j−1
f hi , 1�j��i , 1� i�m, and

� = �1 + �2 + · · · + �m, such thatLgj i = 0∀1�j�m,
1� i�n − �, andT (x, 
) is a diffeomorphism ofDx onto
its image.

The vector relative degree and involutivity of the distribu-
tion span{g1, . . . , gm} guarantee the existence of the change
of variables (4) locally, for each
 (Isidori, 1995). Assump-
tion 1 goes beyond that by requiring (4) to hold on a given
region, uniformly in
.
With the change of variables (4), we rewrite (3) in the

normal form

̇ = �(, �, 
),

�̇
i = Ai�

i + Bi [bi(, �, 
)
+

m∑
j=1

aij (, �, 
)(uj + �j (, �, 
, w))], (5)

where, for 1� i�m, the pair (Ai, Bi) is a controllable
canonical form that represents a chain of�i integrators,
bi(·) = L

�i
f hi , and{aij (·)} = A(·).

Our interest is in the regulation problem. To that end, we
require that the exogenous signalw(t) approaches a constant

limit wss , i.e., limt→∞w(t) = wss . In a similar vein, the
referenceri(t) that the outputyi is required to asymptotically
track has the following two properties:

• ri(t) and its derivatives up to the�i th derivative are

bounded, andr
(�i )
i (t) is piecewise continuous, for all

t�0,
• lim t→∞ ri(t)=riss and limt→∞ r

(j)
i (t)=0 for 1�j��i .

This class of signals includes constant signals as a special
case. Formulating the problem with time-varying references,
which are asymptotically constant, accommodates a com-
mon practice in many applications; for example, in “trajec-
tory planning” schemes employed to achieve point-to-point
motion in the control of robotic manipulators (Sciavicco &
Siciliano, 1996, Chapter 5), or in pre-filter smoothing of a
step command in the control of electric drives (Leonhard,
1985, Chapter 15). The formulation also takes advantage of
the two-step process outlined in the introduction, in the fol-
lowing sense. When the reference satisfies the first property,
the robust control design ensures ultimate boundedness of
the tracking error. When the second property is satisfied as
well, the integral action gaurantees that the error asymptot-
ically converges to zero.
Let rss = {riss}, w̃(t) = w − wss , �i (t) = [ri −

riss , r
(1)
i , . . . , r

(�i−1)
i ]T, �(t) = {r(�i )

i }, and�(t) = {�i}. By
construction,w̃(t), �(t), and�(t) are bounded for allt�0
and converge to zero ast → ∞. Let X ⊂ Rm, � ⊂ R�,
and�0 ⊂ Rm be compact sets such thatrss ∈ X, �(t) ∈ �,
and�(t) ∈ �0 for all t�0, andl0 be a positive constant
such that‖�‖� l0 for all � ∈ �. Setd = (rss, 
, wss) and
Dd = X × � × W . To solve the regulation problem, it
is necessary that for everyd ∈ Dd , thereexist an equi-
librium point at which y = rss and a control input that
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can maintain equilibrium. This is guaranteed by our next
assumption.

Assumption 2. For eachd ∈ Dd , there exist a unique equi-
librium point x̄ = x̄(d) ∈ Dx and a unique control̄u= ū(d)

such that 0= f (x̄, 
)+ g(x̄, 
)[ū+ �(x̄, 
, wss)] andrss =
h(x̄, 
).

With the change of variables (4), the equilibrium point

x̄(d)maps into(̄(d), �̄(d)), where�̄i (d)=[riss ,0, . . . ,0]T.
Let z =  − ̄ andei = �i − �̄

i − �i and rewrite (5) as

ż = �(z, e + �, d),

ėi = Aie
i + Bi [bi(z, e + �, d) − r

(�i )

i

+
m∑

j=1

aij (z, e + �, d)

× (uj + �j (z, e + �, d, w̃))], (6)

where, for convenience, we write the functions�, bi , aij ,
and�j in terms of the new variables. Since we do not nec-
essarily require our assumptions to hold globally, we need
to restrict our analysis in the(z, e) variables to a region that
maps back into the domainDx . The following assumption
states such a restriction.

Assumption 3. There exist positive constantsl1 andl2, in-
dependent ofd, such that for alld ∈ Dd , w ∈ W , � ∈ �
and� ∈ �0,

e ∈ E
def={‖e‖< l1} and z ∈ Z

def={‖z‖< l2} ⇒ x ∈ Dx.

In the output feedback case, the only components
of the state (z, e) that are available for feedback are
ei1=yi − ri,1� i�m. The unavailability of the partial-state
e is dealt with by using a high-gain observer to estimate
its unmeasured components. The unavailability ofz is not
an issue because we will design the controlu to regulate
the errore to zero and then rely on a minimum-phase-like
assumption, stated below, to guarantee boundedness ofz.
The assumption has two parts. The first part states that with
(e + �) as the driving input, the systeṁz = �(z, e + �, d)
is input-to-state stable over a certain region (Khalil, 2002),
which implies that withe=0, the origin ofż=�(z,0, d) is
asymptotically stable. This is strengthened in the second part
of the assumption to local exponential stability of the origin.

Assumption 4.

(i) There exist aC1 proper functionVz : Z → R+, possibly
dependent ond, and classK functions�i : [0, l2) →
R+(i = 1,2,3) and� : [0, l0 + l1) → R+, independent
of d, such that

�1(‖z‖)�Vz(t, z, d)��2(‖z‖),

�Vz

�t
+ �Vz

�z
�(z, e + �, d)� − �3(‖z‖),

∀ ‖z‖��(‖e + �‖)
for all e ∈ E, z ∈ Z, � ∈ �, andd ∈ D. Furthermore,
�(l0)< �−1

2 (�1(l2)).
(ii) The equilibrium pointz = 0 of ż = �(z,0, d) is expo-

nentially stable, uniformly ind.

4. Controller design

Relying on the separation principle (Atassi & Khalil,
1999) that is common to the output feedback designs of
Khalil (2000) andMahmoud and Khalil (1996), we pursue
the same procedure for designing the controller used in
those papers. First, a globally bounded partial state-feedback
controller that meets the design objectives is designed un-
der the assumption thate is available for feedback. Next, a
high-gain observer is used to estimate the derivatives of the
measured outputsei1.

4.1. Partial state feedback design

The first step in the sliding mode design is to specify a
sliding surface on which sliding motion occurs (Young et
al., 1999). In the absence of integral action, we define the
sliding surfacesi = 0 by

si =
�i−1∑
j=1

kij e
i
j + ei�i

, (7)

where the positive constantski1, . . . , k
i
�i−1 are chosen such

that the polynomial

��i−1 + ki�i−1�
�i−2 + · · · + ki1

is Hurwitz, which guarantees that when motion is con-
strained to the surfacesi = 0, the tracking errorei1 and its
derivatives converge to zero. Differentiating (7) and using
(6), we have

ṡi = Fi(z, e, �, d, r
(�i )
i ) +

m∑
j=1

aij (·)[uj + �j (·)], (8)

whereFi(·) = bi(·) − r
(�i )
i + ∑�i−1

j=1 kij e
i
j+1. Let F(z, e, �,

d,�) = {Fi(z, e, �, d, r
(�i )
i )}. In the SISO case, (8) reduces

to ṡ = F(·) + a(·)[u + �(·)] and a standard assumption in
this case is to require the sign ofa(·) to be known anda(·)
to be bounded away from zero. Our next assumption can be
thought of as a straightforward extension to the MIMO case.

Assumption 5. A(z, e+�, d)=�(z, e+�, d)Â(e, �) where
Â is a known nonsingular matrix and� = diag[�1, . . . , �m],
with �i (·)��0>0, 1� i�m, for all e ∈ E, z ∈ Z, � ∈ �,
d ∈ Dd , and some positive constant�0.
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In the ideal SMC case, the controlu can then be taken as

u = Â−1(e, �)[−F̂ (e, �,�) + v],
vi = −�i (e, �,�) sgn(si), (9)

where F̂i(·) is a nominal value ofFi(·), which could be,
but not restricted to,̂Fi(·) = ∑�i−1

j=1 k
j
i e

j+1
i − r

(�i )
i + b̂i (·),

b̂i (·) being a nominal value ofbi(·), and the componentvi
is designed to handle uncertainties. Note thatF̂i(·) = 0 is
possible. The choice of�i (·) will be made clear shortly.
Guided by the motivating example in Section 2, we intro-

duce integral action as follows. First, the ideal sliding sur-
face functionsi of (7) is modified to

si = ki0�i +
�i−1∑
j=1

kij e
i
j + ei�i

, (10)

where�i is the output of

�̇i = −ki0�i + �i sat

(
si

�i

)
,

�i (0) ∈ [−�i/k
i
0,�i/k

i
0], (11)

with ki0>0, and�i a small positive parameter to be specified
later. Furthermore, as was done in Section 2, the ideal SMC
(9) is modified to the continuous control

u = Â−1(e, �)[−F̂ (e, �,�) + v],
vi = −�i (e, �,�) sat(si/�i ). (12)

Inside the boundary layer{|si |��i}, �̇i = ∑�i−1
j=1 kij e

i
j +

ei�i
def= eia , where the “augmented error”eia is a linear com-

bination of the tracking errorei1 and its derivatives up to
order (�i − 1). At equilibrium, eia = 0, which implies that
ei1 = 0. Hence, Eq. (11) represents a conditional integra-
tor, which provides integral action only inside the boundary
layer. In the present case, the resulting equation forṡi can be
written as

ṡi = �i (z, e,�,�, d, w̃)

− �i (z, e + �, d)�i (e, �,�) sat(si/�i ), (13)

where �(·) = {�i (·)} = F(·) − �(·)F̂ (·) + A(·) �(·) +
{ki0(−ki0�i + �i sat(si/�i )}. In order to specify how�i (·) is
chosen, we make the following standard assumption.

Assumption 6. Let

max

∣∣∣∣�i (·)
�i (·)

∣∣∣∣ ��i (e, �,�), 1� i�m (14)

for some known functions�i (·), where the maximization is
taken over all(z, e,�) ∈ �c, d ∈ Dd , � ∈ �, � ∈ �0, and
w ∈ W .

The compact set�c will be defined in the next section
using Lyapunov functions, and will serve as an estimate

of the region of attraction. The functions�i are chosen as
�i (·)=�i (·)+qi , whereqi >0. From (13) and (14), it follows
that inside�c, si ṡi � − �0 qi |si |, whenever|si |��i . We
note that the right-hand side of (14) is independent ofz and
�, even though�i may depend onz and�. The former, while
restrictive, is necessiated by the fact thatz is unavailable
for feedback, and is justified since (14) is only required
to hold over a compact set. The latter is done purely for
convenience, and is not restrictive, since, as we shall see later
on, ‖�‖ = O(max

i
�i ),so that the contribution of� is not

significant, provided the constants�i are sufficiently small.

4.2. Output feedback design

The output feedback design uses the following high-gain
observer to estimateei :

˙̂eij = êij+1 + �ij (e
i
1 − êi1)/(�i )

j , 1�j��i − 1,

˙̂ei�i = �i�i (e
i
1 − êi1)/(�i )

�i , (15)

where�i >0 is a design parameter, and the positive constants
�ij are chosen such that the roots of��i + �i1�

�i−1 + · · · +
�i�i−1� + �i�i = 0 have negative real parts. In (15),êij is an

estimate ofeij , the(j − 1)th derivative ofei1. Let

ŝi = ki0�i +
�i−1∑
j=1

kij ê
i
j + êi�i

(16)

be the corresponding estimate ofsi ,4 where�i is now the
output of

�̇i = −ki0�i + �i sat(ŝi/�i ). (17)

We replacee and s with their estimateŝe and ŝ in the
control (12), and saturate the control outside a compact
set of interest. In particular, rewrite the control (12) as
ui = Υi(e, �,�,�) whereΥ (·) = Â−1(·)[−F̂ (·) + v], with
vi = −�i (·) sat(si/�i ). Inside �c, e belongs to�e, a
compact subset ofR�. Let Si be the maximum value of
|Υi(e, �,�,�)|, where the maximization is taken over all
� ∈ �, � ∈ �0, |�i |��i/k

i
0 ande ∈ �ee, where�ee is a

compact set that contains�e in its interior. The controlu is
then taken as

ui = Si sat(Υi(ê, �,�,�)/Si). (18)

In summary, the output feedback controller is given by
(15)–(18), where

Υ (ê, �,�,�) = Â−1(ê, �)[−F̂ (ê, �,�) + v],
vi = −�i (ê, �,�) sat(ŝi/�i ),

�i (ê, �,�) = �i (ê, �,�) + qi. (19)

4We can takeêi1 as the estimate provided by (15) or the measured

output ei1.
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To complete the controller design, we must specify how�i

and�i are chosen. The parameters�i result from replacing
an ideal SMC with its continuous approximation, and hence
should be chosen “sufficiently small” to recover the perfor-
mance of the ideal SMC. Similarly, in order for the output-
feedback controller to recover the performance under state-
feedback, the high-gain observer parameters�i should also
be chosen “sufficiently small”. Therefore, one might view
�i and�i as tuning parameters and first reduce�i gradually
until the transient response under partial state feedback is
close enough to the ideal SMC, and then reduce�i gradually
until the transient response under output feedback is close
enough to that under state feedback. The asymptotic theory
of the next section guarantees that this tuning procedure will
work.

5. Closed-loop analysis

For i=1, . . . , m, define�i ∈ R�i−1 by (ei)T=[(�i )T ei�i
]

and write the closed-loop system in the standard singularly
perturbed form

�̇i = − ki0�i + �i sat((si − Ni(�i )�i )/�i ),

�̇i = Mi�
i + Ci(si − ki0�i ),

ṡi = �i (z, e,�,�, d, w̃)

− �i (z, e + �, d) �i (e, �,�) sat(si/�i ) + �∗
i (·),

ż = �(z, e + �, d),

�i�̇i = Li�i + �iBi


bi(·) − r

(�i )
i

+
m∑

j=1

aij (·)(uj + �j (·))

 , (20)

where

Mi =




0 1 · · · · · · 0
0 0 1 · · · 0
...

...

0 · · · · · · 0 1
−ki1 −ki2 · · · · · · −ki�i−1


 , Ci =




0
0
...

0
1


 ,

Li =




−�i1 1 · · · · · · 0
... 0 1 · · · 0
...

...
... · · · · · · 0 1

−�i�i 0 · · · · · · 0



,

NT
i (�i ) =




0
k2i �

�i−2
i
...

k
�i−1
i �i


 ,

�∗
i (·) = ki0�i [sat(ŝi/�i ) − sat(si/�i )]

+
m∑

j=1

aij (z, e + �, d)

× [Sj sat(Υj (ê, �,�,�)/Sj ) − Υj (e, �,�,�)]

and the scaled estimation error�i = {�i
j } is defined by

�i
j = (eij − êij )/(�i )

�i−j .

The matricesMi andLi are Hurwitz by design. Let�={�i}
and� = {�i}.

5.1. Boundedness and convergence

The stability analysis shares many details withKhalil
(2000) andMahmoud and Khalil (1996).5 The main dif-
ference between the present analysis and its counterparts in
Khalil (2000) andMahmoud and Khalil (1996)is treating
�i and�i separately, while inKhalil (2000) andMahmoud
and Khalil (1996), they are lumped together in one vector.
As in Khalil (2000) andMahmoud and Khalil (1996), it is
both convenient as well as instructive to present the anal-
ysis in two parts. In the first part, we show that the con-
troller parameters can be chosen to bring the trajectories to
an arbitrarily small neighborhood of an equilibrium point, at
which the tracking error is zero. In the second part, we show
that the controller parameters can be further tuned to ensure
asymptotic stabilization of this equilibrium point. To show
the first part, we define appropriate Lyapunov functions for
each of the five components of (20), i.e.,si , �i , �

i , z, and�i ,
and use them to construct a compact set of interest�c ×��
that serves as an estimate of the region of attraction. We
show that this set is positively invariant for a suitable choice
of the controller parameters and that trajectories starting in
the interior of this set will eventually reach a “small” set
�� ×�� that shrinks to the origin as‖�‖∞and‖�‖∞ tend to
zero. To that end, letQi = QT

i >0 andPi = P T
i >0 be the

solutions of the Lyapunov equationsQiMi + MT
i Qi = −I

andPiLi +LT
i Pi =−I , respectively. For the componentss,

�, �, and�, we use the quadratic Lyapunov functions

V s
i (si)

def= 1
2s

2
i , V �

i (�i )
def= 1

2�
2
i , V

�
i (�

i )
def= �i

T
Qi�

i

and

V
�
i (�i )

def= �iTPi�i ,

respectively, and we use the Lyapunov functionVz(t, z, d)

for z. The sets�c and�� are defined by�c
def= �c × �cz,

5We omit most of the details that are similar toKhalil (2000) and
Mahmoud and Khalil (1996). A complete account of such details can be
found in Seshagiri (2003).
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�c
def= (

∏m
i=1�ci ), ��

def= ∏m
i=1��i , where

�ci
def= {Vi(�

i )�(ci + �i )
2�i , V s

i (si)� 1
2c

2
i ,

V �
i (�i )� 1

2(�i/k
i
0)
2},

�cz
def= {Vz(t, z, d)��4(l0 + l3‖c‖)},

��i
def= {V �

i (�i )��2i ϑi}. (21)

ci >�i is a positive constant,�4=�2◦� is a classK function,
and�i , l3, andϑi are positive constants independent of�i

and�i to be specified shortly.
Before we show that�c ×�� serves as an estimate of the

region of attraction, we need to ensure that(z, e,�) ∈ �c

implies that(z, e) ∈ Z×E. It can be verified that‖e‖� l3‖c‖
in �c, where l3 is a positive constant independent ofc.
Using this fact, along with Assumption 4(i), it follows that
choosingc to ensure thatl3‖c‖<min{l1, �−1

4 (�1(l2)) − l0}
guarantees that(z, e) ∈ Z × E for all (z, e,�) ∈ �c.
Since the boundaries of the set�c × �� are formed of

Lyapunov surfaces, to show that this set is positively invari-
ant, it suffices to show that the derivatives of the correspond-
ing Lyapunov functions are non-positive on the respective
boundaries. Using the fact that|si |�ci , |�i |��i/k

i
0 in �c,

and the inequality

V̇
�
i � − ‖�i‖2 + 2‖�i‖ ‖QiCi‖ (|si | + ki0|�i |),

it is easy to show thatV̇ �
i �0 on the boundaryVi =

(ci + �i )
2�i for the choice�i = 4‖QiCi‖2�max(Qi). Since

�i �̇i � − ki0|�i |2 + �i |�i |, it follows that V̇ �
i �0 on the

boundaryV �
i = 1

2

(
�i/k

i
0

)2
. Next, we consider thėsi equa-

tion, which differs from (13) only in the term�∗
i . Inside

��i , ‖�i‖ = O(�i ), which can be used to show that, for
sufficiently small �i , the control is not saturated inside
�c ×��.Using this, along withsi = ŝi +Ni(�i )�i , it can be
shown that�∗

i is O(‖�‖∞) inside�c × ��. Let �i be small
enough that|�∗

i (·)|< �0qi . On the boundaryV s
i = 1

2c
2
i we

have sat(si/�i ) = sgn(si), so that

V̇ s
i � − |si |[�i (·)�i (·) − |�i (·)| − |�∗

i (·)|].
Using (14), the definition of�i , and the fact that
|�∗

i (·)|< �0qi , it follows that V̇ s
i <0 on the boundary

V s
i = 1

2c
2
i . Assumption 4(i) shows thaṫVz�0 on the bound-

ary Vz = �4(l0 + l3‖c‖). Finally, using the inequality

V̇
�
i � − ‖�i‖2

�i
+ 2 ‖�i‖ ‖MiBi‖ �i ,

where�i = max|bi(·) − r
(�i )
i + ∑m

j=1aij (·)[uj + �j (·)]|,
with the maximization taken over all(z, e,�) ∈ �c, d ∈
Dd , � ∈ �, � ∈ �0, w ∈ W , and� ∈ ��, it follows
that V̇ �

i �0 on the boundaryV �
i = �2i ϑi for the choice

ϑi >4 ‖MiBi‖2 �max(Mi) �2
i . Hence,�c×�� is positively

invariant.
Our next step is to show that for any boundedê(0), and

any(z(0), e(0),�(0)) ∈ �b, where 0<bi < ci , it is possible

to choose�i such that the trajectory enters the set�c×�� in
finite time. Since, for all(z, e,�) ∈ �c, the right-hand side
of the slow equation of (20) is bounded uniformly in�, for all
(z(0), e(0),�(0)) ∈ �b there is a finite timeT0, independent
of �, such that for all 0� t�T0, (z(t), e(t),�(t)) ∈ �c.
During this interval, we have

V̇
�
i � − �i�‖�i‖2 for V �

i (�i )��2i ϑi

for some positive constant�i�. This inequality can be used to
show that�i (t) enters��i within the time interval[0, T (�)],
where lim�→0T (�) = 0 (Atassi & Khalil, 1999). Therefore,
by choosing�i small enough we can ensure thatT (�)<T0.
The argument that the set�c × �� is positively invariant

can be extended to show that trajectories starting inside it
reach the set�� × �� in finite time, where

��
def= �� × {Vz(t, z, d)��4(‖�‖∞r∗)},

��
def=

m∏
i=1

{(ei,�i ) : |si |��i (1− �i ),

|�i |� �i

ki0

, V
�
i (�

i )�16�2i �i},

��
def=

m∏
i=1

{�i ∈ R�i : V �
i (�i )�‖�‖2∞ϑi}. (22)

0< �i <1 is chosen such that max�i �qi/(2�i ) − qi , �i is
small enough that|Ni(�i )�i |< �i �i , andr

∗ > �∗, where�∗
is a positive constant such that‖e‖�‖�‖∞�∗ for all e ∈ ��.
An argument similar to the one for�c × �� can be used to
show that�� × �� is positively invariant. This completes
the first part of the analysis.
To prove the second part, note that whenw̃ = 0, � = 0

and� = 0, the system has a unique equilibrium point(z =
0, e = 0,�i = �̄i ,� = 0). Let s̄i = ki0�̄i be the correspond-
ing equilibrium value ofsi , �̃ = � − �̄, and s̃ = s − s̄. By
the converse Lyapunov theorem (Khalil, 2002), Assumption
4(ii) implies that in some neighborhood ofz = 0 there is a
Lyapunov functionWz(z, d) that satisfies

�5‖z‖2�Wz��6‖z‖2, (�Wz/�z)�(z,0, d)� − �7‖z‖2,
and∥∥�Wz/�z

∥∥ ��8‖z‖
for some positive constants�5 to �8, independent ofd. Let
Q=blockdiag[Q1, . . . ,Qm], andP=blockdiag[P1, . . . , Pm].
Using

V = Wz(z, d) + �9�
TQ� + 1

2�10‖�̃‖2
+ 1

2‖s̃‖2 + �TP�

as a Lyapunov function candidate, where�9, �10>0, it can
be verified that, by first taking�9 large enough, then�10
large enough, then‖�‖∞ small enough, and lastly‖�‖∞
small enough,V̇ satisfies an inequality of the form

V̇ � − �11V + �12
√
V (‖�(t)‖ + ‖�(t)‖ + ‖w̃(t)‖) (23)
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for some positive constants�11 and�12, uniformly in � and
�. Sincew̃, �(t), �(t) → 0 as t → ∞, the preceding in-
equality can be used to show that all trajectories approach
the equilibrium point(z= 0, e= 0,� = �̄,� = 0) ast tends
to infinity. If all assumptions hold globally, the controller
can achieve semiglobal regulation. We summarize our con-
clusions in the following theorem.

Theorem 1. Suppose Assumptions1 through6 are satisfied,
the constantsci , �i , ϑi , and l3 are chosen as described be-
fore, ê(0) is bounded, and the initial states(z(0), e(0),�(0))
belong to the set�b, where 0<bi < ci . Then, there ex-
ists �∗ >0, and for each� with ‖�‖∞ ∈ (0,�∗], there ex-
ists �∗ = �∗(�)>0, such that, for �i ∈ (0,�∗] and �i ∈
(0, �∗], all state variables of the closed-loop system un-
der the output feedback controller(15)–(19)are bounded,
and lim t→∞ e(t) = 0. If, in addition, all the assumptions
hold globally, then, given compact setsN ⊂ Rn andM ⊂
R�, the foregoing conclusion holds for all(z(0), e(0)) ∈
N and ê(0) ∈ M, provided�c is chosen large enough to
includeN .

5.2. Performance

We saw in Section 2, via simulation, that the output feed-
back CSMC with a conditional integrator recovers the per-
formance of the state-feedback ideal SMC. The following
theorem shows that the closed-loop trajectories under the
two controllers can be made arbitrarily close.

Theorem 2. Let X = (z, e) be part of the state of the
closed-loop system for(6) under the output feedback CSMC
(15)–(19),andX∗ = (z∗, e∗) be the state of the closed-loop
system under the state feedback ideal SMC control(7) and
(9),withX(0)=X∗(0). Then, under the hypotheses of The-
orem1, for every	>0, there exists�∗ >0, and for each�
with ‖�‖∞ ∈ (0,�∗], there exists�∗ = �∗(�)>0, such that,
for �i ∈ (0,�∗] and�i ∈ (0, �∗], ‖X(t)−X∗(t)‖�	 ∀ t�0.

Proof. We prove the theorem in two parts. First, we look
at the trajectories under state feedback CSMC with the con-
ditional integrator. LetX† = (z†, e†) be part of the state
of the closed-loop system under the control (10)–(12), with
X†(0)=X∗(0). For this case, we show that, for sufficiently
small�i , X

†(t)−X∗(t)=O(‖�‖∞) ∀ t�0. Let s† ands∗
be the corresponding sliding surface functions of the two
systems. LetIM = {1, . . . , m} andt1 =min{t†1, t∗1 }, where

t
†
1 = min

i∈IM
{t : |s†i (t)|��i} and

t∗1 = min
i∈IM

{t : |s∗
i (t)| = 0}.

If t1>0, using sat(s†i (t)/�i )=sgn(s∗
i (t)) ∀ 0� t < t1, it can

be shown thatX†(t)=X∗(t) ∀ 0� t� t1. Next, we consider

X†(t) andX∗(t) in the time intervalt� t1. Let

I1 = {i : |s†i (t1)|��i} ∪ {i : s∗
i (t1) = 0}.

SinceX†(t1) = X∗(t1), |s†i (t1) − s∗
i (t1)| = |ki0 �†i (t1)|��i .

Using this, along with the definition ofI1 and the fact
that |s†i (t)| and |s∗

i (t)| monotonically converge to the posi-

tively invariant sets{|s†i |��i} and{0}, respectively, it can be
shown that for alli ∈ I1, |s†i (t) − s∗

i (t)|�3�i for all t� t1.

It follows that for all i ∈ I1, s
†
i (t) − s∗

i (t) = O(�i ) ∀ t�0.

Since the equations for�i
†
and�i

∗
are identical stable lin-

ear equations, driven by inputss†i − ki0 �†i ands∗
i respec-

tively, where|ki0 �†i |��i and s
†
i − s∗

i = O(�i ), continuity
of solutions on the infinite time interval (Khalil, 2002, The-
orem 9.1) can be used to show that for sufficiently small�i ,

�i
†
(t) − �i

∗
(t) = O(�i ) and henceei

†
(t) − ei

∗
(t) = O(�i )

for all i ∈ I1 and t� t1. In particular, if I1 = IM , then
e†(t) − e∗(t) = O(‖�‖∞) for all t� t1, which can then be
used to show thatz†(t)− z∗(t)=O(‖�‖∞) for all t� t1, so
that the result follows.
If I1 �= IM , let t2 ∈ (t1,∞) =min{t†2, t∗2 ), where

t
†
2 = min

i∈IM\I1
{t : |s†i (t)|��i} and

t∗2 = min
i∈IM\I1

{t : |s∗
i (t)| = 0}.

LetX†
1 be the part of the stateX

† with the componentsei, i ∈
I1, deleted andX∗

1 be the corresponding part ofX
∗. For i ∈

IM\I1, we have sat(s†i /�i )=sgn(s∗
i )=sign(s†i ) ∀ t1� t < t2,

so that, during this period, the right-hand side of the equa-
tions for X†

1 and X∗
1 are Lipschitz functions of their ar-

guments. ViewingX†
1 andX∗

1 as states of systems driven

by inputs (�†i , e
i†) and ei

∗
respectively,i ∈ I1, and us-

ing the fact that|ki0 �†i |��i , and e
i† − ei

∗ = O(�i ), the
results of (Khalil, 2002, Theorem 3.4), dealing with conti-
nuity of solutions on compact time-intervals, can be used
to show that, for sufficiently small�i , X

†
1(t) − X∗

1(t) =
O(‖�‖∞) ∀ t1� t� t2.Using this, the previous arguments
involving (Khalil, 2002, Theorem 9.1) can then be repeated

to show that, for sufficiently small�i , e
i†(t) − ei

∗
(t) =

O(�i ) ∀ t� t2 and alli ∈ I2, where

I2 = {i ∈ IM\I1 : s†i (t2)|��i}
× ∪{i ∈ IM\I1 : s∗

i (t2) = 0}.
In particular, if I1 ∪ I2 = IM , then e†(t) − e∗(t) =
O(‖�‖∞) ∀ t� t2, which can then be used to show that
z†(t)− z∗(t)=O(‖�‖∞) ∀ t� t2, so that the result follows.
If I1∪ I2 �= IM , the result follows by an inductive argument
that uses (Khalil, 2002, Theorem 3.4) and (Khalil, 2002,
Theorem 9.1) alternately. In particular, this completes the
first part of the proof, which shows that there exists�∗ >0
such that‖�‖∞ ∈ (0,�∗] ⇒ ‖X†(t)−X∗(t)‖�	/2 ∀ t�0.
In the second part of the proof, we use the idea in

Atassi and Khalil (1999)to show that the trajectoriesX
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of the system under output feedback approach the trajec-
tories X† under state feedback as� → 0. In particular,
we show that there exists�∗ = �∗(�) such that for all
�i ��∗, ‖X(t) − X†(t)‖�	/2 ∀ t�0. This is done by di-
viding the time interval[0,∞) into three sub-intervals
[0, T (�)], [T (�), T3] and [T3,∞) and showing that the in-
equality ‖X(t) − X†(t)‖�	/2 holds over each of these
sub-intervals. From asymptotic stability of the two systems,
we know that there exists a finite timeT3, independent of
�, such that‖X(t) − X†(t)‖�	/2 ∀ t�T3. Also, as men-
tioned in Section 5.1, there is a time interval[0, T (�)],
with T (�) → 0 as� → 0, during which the fast variable�
decays to anO(‖�‖∞) value. It can be shown that global
boundedness of the controls implies that over this interval,
‖X(t) − X†(t)‖��0T (�),for some positive constant�0
that is independent of�. SinceT (�) → 0 as � → 0, for
small enough‖�‖∞, ‖X(t) − X†(t)‖�	/2 ∀ t ∈ [0, T (�)].
Lastly, noting thatX(T (�)) − X†(T (�)) → 0 as � → 0
and � is O(‖�‖∞), and using the continuous depen-
dence of the solutions of differential equations on compact
time intervals (Khalil, 2002, Theorem 3.4), one can show
that it is possible to choose� to satisfy the inequality
‖X(t)−X†(t)‖�	/2 over the time interval[T (�), T3]. This
shows that‖X(t) − X†(t)‖�	/2 ∀ t�0. The result then
follows from the triangle inequality.

6. Universal integral regulator

For SISO systems, the flexibility that is available in the
choice of the functionŝF and� can be exploited to simplify
the controller to

u = − k sat(ŝ/�)

= − k sat

(
k0� + k1e1 + k2ê2 + · · · + ê�

�

)
. (24)

As mentioned in Section 2, this particular design, while hav-
ing a simple structure, is also natural since the control is
required to be bounded. It is clear from (24) that the only
precise knowledge about the plant that is used is its relative
degree and the sign of its high-frequency gainLgL

�−1
f h.

This “universal” design was first presented inKhalil (2000),
for the conventional integrator, where it was shown that the
structure of the universal integral regulator coincides with
the classical PI and PID controllers, followed by saturation,
for relative degree one and two plants, respectively.
In the present case, when� = 1, the integrator equation

can be rewritten aṡ� = e1 + (�/k)(û − u), where

u = −k sat

(
k0� + e1

�

)
and û = −k

(
k0� + e1

�

)
.

The termû is the “unsaturated version” of the controlu, so
that the controller (24) has the structure shown inFig. 5. It
is a PI controller with “anti-windup” (Fertik & Ross, 1967),
followed by saturation.

int Ki

Kp

r

+

L

+_

e_1
+

k

k

Plant

+ _

uuh y

-

Fig. 5. Universal regulator for relative degree one systems : PI controller
with anti-windup, followed by saturation;KI = kk0/�, KP = k/�, and
L = �/k.

In the relative degree� case, the integrator equation can be
rewritten aṡ�=ea+(�/k)(û−u), whereea=∑�−1

j=1 kj ej+e�
is the augmented error that was defined in Section 4. It is
clear from the expression foṙ� that the anti-windup struc-
ture ofFig. 5is retained in this case as well. The control (24)
now represents a “PID�−1 controller”, with a conditional
(anti-windup) integrator, followed by saturation. This inter-
pretation of the conditional integrator as a specially tuned
version of an anti-windup scheme for the universal integral
regulator design was presented in a preliminary version of
this paper (Seshagiri & Khalil, 2001).

7. Conclusion

We have presented a new approach to introducing integral
action in the control of nonlinear systems, which captures
the regional and semi-global asymptotic regulation results
of Khalil (2000) andMahmoud and Khalil (1996), while
improving the transient response. In the new approach, the
integrator is designed in such a way that it provides inte-
gral action only “conditionally”, effectively eliminating the
performance degradation. The improvement in performance
is demonstrated analytically by showing that the output-
feedback continuous sliding mode controller, with condi-
tional integrator, recovers the performance of an ideal state-
feedback sliding mode controller, without integral action,
as the controller parameters�i and�i tend to zero. In view
of this result, the control design can start with the ideal
state-feedback sliding-mode control, where the parameters
of the sliding surfaces∗

i = 0 are chosen to meet the tran-
sient response specifications. Then, integral action is intro-
duced by modifyings∗

i to si =k0i �i + s∗
i , with �̇i =−k0i �i +

�i sat(si/�i ). The discontinuous term sgn(s∗
i ) in the ideal

SMC is replaced by sat(si/�i ). The parameters�i are re-
duced gradually until the transient response is close enough
to the ideal case. Finally, a high-gain observer is brought in
to estimate the derivatives of the tracking error. The observer
parameters�i are gradually reduced until the transient per-
formance is close enough to the ideal case. Note that in the
ideal SMC design, the inequality that corresponds to (14)
will have�i terms that do not account for the�i variables.
However, since�i isO(�i ), the�i ’s of the ideal SMC design
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will still work in the presence of the conditional integrator,
provided the�i ’s are sufficiently small.
While modifying the integral control designs ofKhalil

(2000)andMahmoud and Khalil (1996)from conventional
to conditional integrators, we have also extended the prob-
lem statement to MIMO systems and allowed time-varying
matched disturbances.Moreover, we proved that the trajecto-
ries under output feedback approach those under state feed-
back as� → 0. This property also holds forKhalil (2000)
andMahmoud and Khalil (1996), but was not proved there.
Further work is needed in understanding how to fine-

tune the controller parameters. For example, it is not hard
to see that, when the level of the control is fixed a priori,
there is a trade-off between the region of attraction and the
speed of convergence, which is dictated by the choice of the
sliding-surface parameters. Identifying such trade-offs will
give insight into how the parameters can be tuned to achieve
specific objectives, and also identify possible limitations on
the achievable performance.
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