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xtremum seeking (ES) was invented in
1922 and is one of the oldest feedback
methods. Rather than regulation, its
purpose is optimization. For this reason,
applications of ES have often come
from energy systems. The first noted
publication on ES in the West is Draper and
Li's application to spark timing optimization in
internal combustion engines,. In the ensuing
decades, ES has been applied to gas turbines
and even nuclear fusion reactors. Renew-
able energy applications have brought a new
focus on the capabilities of ES algorithms.
In this article we present applications of ES in
two types of energy conversion systems for
renewable energy sources: wind and solar
energy. The goal for both is maximum power
point tracking (MPPT), or, the extraction of
the maximum feasible energy from the
system under uncertainty and in the absence
of a priori modeling knowledge about the
systems. For the wind energy conversion
system (WECS), MPPT is performed by
tuning the set point for the turbine speed
using scalar ES. Performing MPPT for the
photovoltaic (PV) array system entails tuning
the duty cycles of the DC/DC converters
employed in the system using multivariable
ES. Experimental results are provided for the
photovoltaic system.

Increasing availability of energy storage devices intensi-
fies the effort to harvest maximum power from renewable
sources, particularly wind turbines (WT) and PV systems.
Renewable sources operate under a wide range of uncertain
environmental parameters and disturbances. For example,
uncertain quantities such as wind speed in WT and solar
irradiance in PV modules affect the respective power maps
and the maximum power points (MPP). The power map is
also a function of a control input—the turbine speed in WT
and the terminal voltage in the PV modules. The power map
of a WT has a unique MPP with respect to turbine speed at
each level of wind speed. Likewise, the power map of a PV
module has a unique MPP with respect to terminal voltage
at each level of solar irradiance.

The process of governing a WT or PV module to its MPP
is know as maximum power point tracking (MPPT). The
conventional perturb and observe (P&O) techniques do
so by a combination of adding a step perturbation to the
control signal and monitoring the direction of changes in
power,. Most techniques derived from P&O are based on
discrete analysis and require a delicate balance between
the amplitude of the control input step perturbation and
the possible changes in environmental parameters. More-
over, the sampling frequency needs to be carefully selected
with respect to the response time of the system to the step
perturbation. Since the system is not linear, the sampling
frequency is also a function of the step size and of the
magnitude of changes in environmental parameters.

Extremum seeking is an attractive alternative to P&O
techniques for solving MPPT problems in wind and solar
systems. As a model-free, real-time optimization approach,
ES is well suited for systems with unknown dynamics or
those that are affected by high levels of uncertainty or
external dynamics, like WT and PV systems. Similar to
P&O techniques, ES employs perturbations. However,
instead of employing a discrete step perturbation, ES uses a
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continuous oscillatory perturbation, also known as a
“probing function.” More importantly, ES does not merely
monitor the direction of the output response but exploits
the measured response to estimate the gradient of the power
map and update the control input in proportion to the gradi-
ent of the power map, .

ES has the dual benefit of rigorously provable convergence
and the simplicity of hardware implementation. In addition
to a probing signal, the ES algorithm employs only an inte-
grator, as well as optional high-pass and a low-pass filters.
The amplitude and frequency of the probing function in ES
influence the precision of the MPPT algorithm. However,
the frequency selection is not as complicated as the selection
of the sampling frequency in P&O technique. For dynamic
systems, it is enough to select the ES probing frequency
reasonably smaller than the highest frequency that can pass
the system without significant attenuation.

ES guides the system to its MPP regardless of changes in
environmental parameters, as long as the changes are slow.
While the power map shape defines the convergence rate of
the conventional gradient-based ES, we also present in this
article more sophisticated schemes like the Newton-based
ES to alleviate the issue of unsymmetrical transients.,.

In some cases we need an inner-loop control to achieve
desired closed-loop performance, for example, for speeding
up the convergence rate and alleviating magnetic saturation

in WT systems. Combining a discrete MPPT method such as
P&O with a continuous inner-loop control creates a hybrid
system that needs careful parameter selection, particularly
the sampling period and perturbation amplitude. In contrast,
ES can be applied without modifications to any system with
a stabilizing inner-loop control.

A distributed MPPT architecture is not the most efficient
option for handling a multivariable power map, such as a
cascade PV configuration with one converter per module.
For multivariable MPPT, the complexity of P&O algorithms
increases dramatically with the size of the input vector. In
contrast, ES trivially extends to multivariable MPPT, with
only a few restrictions in selecting the probing frequencies.
Furthermore, with ES we have the option of employing
the algorithm’s Newton-based version to achieve transients
that are symmetric relative to the peak of the MPP and
uniform in speed for multiple modules.

This paper is organized as follows. The next section
introduces both gradient and Newton-based ES schemes.
Subsequently, a Scalar gradient-based ES is combined with
a nonlinear inner-loop control developed from field-oriented
control (FOC) to achieve power control and optimization in
WT. Simulation results demonstrate the effectiveness of the
proposed algorithm. Finally, multivariable MPPT based
on ES for PV systems are presented, and the validity of the
proposed algorithms with experimental results are verified.

THE BASICS OF EXTREMUM SEEKING
gradient-based ES for multi-input static maps
is shown in Figure 1. The algorithm measures

the scalar signal y(t) = Q(0 (t)), where Q(-) is

an unknown map whose input is the vector

0=1[6,,0,,---,6,]". The map has a unique maxi-

mum point at 8*=1[6;,6",---,0,]" where

2()=0, 2O)=H<0, H=H" 1

a0

where H is the Hessian matrix and defines the shape
of the unknown map around its maximum point.
Gradient estimation is helped by the signals

S(t) = [ay sin(w,t) -+ a, sin(w,t)]”

2

M(t) = [ail sin(w,t) -+ ai Sin(wnt)]T 3

with nonzero perturbation amplitudes a; and with
a gain matrix K that is diagonal. Some restrictions
are imposed on the probing frequencies, ;. For
the unknown map, Q(-), the averaged system is

6= KHO 4
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FIGURE 1 The gradient-based ES for a static map.

where , and is an estimate of the optimal input vector, . If the
user chooses the elements of the diagonal gain matrix as positive,
the ES algorithm is guaranteed to be locally convergent. However,
the convergence rate depends on the unknown Hessian H. This
weakness of the gradient-based ES algorithm is removed with
the Newton-based ES algorithm.

A Newton version of the ES algorithm, shown in Figure 2,
ensures that the convergence rate be user-assignable, rather
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FIGURE 2 A Newton-based ES for a static map.

than being dependent on the unknown Hessian of the map,. The
elements of the demodulating matrix N(t) for generating the
estimate of the Hessian are given by

16 ( . 1 4 . .
Nii(t) = a_iz (Sll’l2 (w,-t) - E) f Nij(t) = ?ajsm(a)it)sm(wjt) .5

The multiplicative excitation helps to generate the estimate of the
Hessian as A(t) = N(t) y(t). The Riccati martrix differential equation
I'(t) generates an estimate of the Hessian’s inverse matrix, avoiding
matrix inversions of Hessian estimates that may be singular during
the transient.

A quadratic map's averaged system in error variables 4 = § — 6",
F=r-mtis B ~
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Because they are determined by K and p, the eigenvalues are
independent of the unknown H. As a result, the (local) convergence
rate is user-assignable.

ES extends in a relatively straightforward manner from static
maps to dynamic systems, provided the dynamics are stable and
the parameters of the algorithm are chosen so that the dynamics
are slower than those of the plant.

In the following section, the scalar gradient-based ES is applied
to MPPT of a wind energy conversion system (WECS), with an
inner-loop control.

WIND ENERGY CONVERSION SYSTEMS
ind turbines work in four different regions (see Figure 3).

Available wind power on the blade impact area is defined as
P, = 2p,AV2, A =mR?, 7

where R is the blade length, p, is air density, and V,, is wind speed.

I' = oI — pTHT k——0) N(1)

Power

S, ——
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For Region II MPPT the turbine power is
related to the wind power as

Py = wTy = Cp(Vwat)PWa 8

where T, is the rotor torque, , is the turbine
speed, and C, is the non-dimensional power

coefficient, which is a measure of the ratio of
the turbine power to the wind power.

The turbine speed can be used to change
the power coefficient, C,, which results in
power control and optimization. The MPPT
algorithm in sub-rated power region should
be able to guide the WT to its MPP regard-
less of the variations of the wind speed. The
power captured by the WT is defined by the
wind speed, V,,, and the turbine speed, w;.
The wind speed is a disturbance input and
the turbine speed can be manipulated to
govern the turbine power to its MPP in sub-
rated region. The variation of turbine power
versus turbine speed is shown in Figure 4
for different wind speeds. As shown in Fig.
4, under a constant wind speed the relevant
power curve has a unique MPP, which is
defined by a specific turbine speed.

Inner-Loop Control Design for WECS
One can manipulate the stator voltage
amplitude, V,,,,, and its frequency, w,, to
obtain the desired closed-loop performance
for WECS. We introduce an integrator
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FIGURE 3 Typical power curve of WT including
four operating regions.
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FIGURE 4 Variation of the turbine power versus
turbine speed for different wind speeds.

and an auxiliary input, u,, to achieve input-output decoupling in WECS
dynamics. Using one step of integration in front of V,,, the extended
equations of WECS are introduced as follows:

X =f()+gu+ gu, x€R, ueR 9

where x = [ 14, ig, Aas 00, Voms @y, 0, @, 1" where i, and iz are stator currents,
Aq and Ay are rotor fluxes, 4 = 6, — 1% , 0, = [ w,dt, w, is the rotor electrical
frequency, u, = w, is the electrical frequency of the stator, u, is an auxiliary
input (voltage amplitude rate) which generates the voltage amplitude of
the stator.

As seen in Fig. 4, turbine speed controls power generation. Decoupling
the rotor flux and electromagnetic torque produces the benefit of field-
oriented control (FOC). Turbine speed, x,, and flux amplitude, x3 + x3, are
introduced as measurable outputs for this reason. Feedback linearization
is applied based on the selected outputs. This results in the regulation of
turbine speed, w;, to its reference value '™, while the amplitude of rotor

t 2

flux, |A| = y/xZ+ x2, converges to its desired value, |A|".

Wind Turbine Power Optimization

To overcome challenges associated with the conventional power control
and optimization algorithms and to remove the dependence of the MPPT
algorithm on system modeling and identification, an ES algorithm for
MPPT of WECS is employed.

Access to turbine power measurements and speed manipulation are
assumed in this article. Although there is no model of the power coefficient
or turbine power, its power map has one MPP under any wind speed.

The proposed nonlinear control not only achieves the desired closed-
loop performance, but faster response time (high power efficiency) as it
also prevents magnetic saturation. The ES scheme with inner-loop control
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is shown in Figure 5. Shown here, the refer-
ence inputs of the inner-loop control are wfef
and |A["*". The MPP is parameterized by the
optimal turbine speed at each wind speed, as
estimated by the ES loop. The other control
input, |A[, defines the level of the flux linkage
of the rotor which prevents induction genera-
tor from magnetic saturation.

Combination of the Controller and WECS
results in fast dynamics, while the dynamics
contained in the ES algorithm are of slow and
medium speeds. The algorithm estimates the
optimal turbine speed, ®!* = w; . With respect
to the controller-system's fast dynamics, this
can be considered a constant value.

Simulation Results on a WECS Model

A time frame of 30 seconds demonstrates the
differences between the proposed algorithm
and that of the conventional MPPT which is
based on P&O with an FOC in the inner loop.
The MPPT process is shown in Figure 6.
The extracted energy by our proposed
algorithm is 2.36% higher than the extracted
energy by the conventional MPPT and FOC.
Our algorithm provides perfect input-output
decoupling and guarantees a larger domain
of attraction, which increases performance
robustness with respect to the system param-
eters. The improved efficiency also increases
the competitiveness of wind energy.

PHOTOVOLTAIC SYSTEMS

xtremum seeking has been applied to

MPPT design for photovoltaic (PV) micro-
converter systems, where each PV module
is coupled with its own DC/DC converter.
Most existing MPPT designs are distributed
(decentralized), i.e., they employ one MPPT
loop around each converter, and all designs,
whether distributed or multivariable, are
gradient-based,. The convergence rate of
gradient-based designs depends on the
Hessian, which in turn is dependent on envi-
ronmental conditions such as irradiance and
temperature. Consequently, when applied to
large PV arrays, the variability in conditions,
and/or PV module degradation, results in
non-uniform transients in the convergence
to the MPP. Using a multivariable gradient-
based ES algorithm for the entire system
instead of a scalar one for each PV module,
decreases sensitivity to the Hessian, but does
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FIGURE S The ES algorithm for MPPT of the WECS with the inner-loop control.

not eliminate this dependence. The Newton-based ES algorithm is
used, as it simultaneously employs estimates of the gradient and
Hessian in the peak power tracking. The convergence rate of such
a design to the MPP is independent of the Hessian, with tunable
transient performance that is independent of environmental
conditions. Experimental results demonstrate the effectiveness
of the proposed algorithm in comparison to existing scalar
designs, as well as multivariable, gradient-based ES.

Using a multivariable gradient-based ES MPPT design for the
micro-converter architecture, where each PV module is coupled
with its own DC/DC converter, reduces the number of required
sensors (hardware reduction). Transients under sudden changes
in solar irradiance are more uniform as is the environmental tem-
perature in comparison to a scalar gradient-based ES for each
PV module. True of gradient-based designs, the convergence to
MPP is dependent on the unknown Hessian: it varies with irradi-
ance, temperature, and module degradation and mismatch.

In comparison with the standard gradient-based multivariable
extremum seeking, the Newton-based ES removes the depen-
dence of the convergence rate on the unknown Hessian and
makes the convergence rate of the parameter estimates user-
assignable. In particular, all the parameters can be designed to
converge with the same speed, yielding straight trajectories to
the extremum even with maps that have highly elongated level
sets. When applied to the MPPT problem in PV systems, the
method offers the benefit of uniform

convergence behavior under a wide FIGURE 6
range of working conditions that Proposed algorithm, MPPT
includes temperature and irradiance (solid red); conventional
variations and the non-symmetric P&0 with FOC (dashed
power generation of the neighboring blue); maximum power

available to the WECS
PV modules as a result of module (dashed black) .

degradation or mismatch.

P (kW)

Multivariable MPPT of PV Systems
Conventionally, each DC/DC converter has a
MPPT loop to extract maximum power from the
PV system (known as power optimizer in industry).
The output sides of the converters are connected
in series. The PV system is connected to the power
grid through a DC/AC inverter, which has its
separate controller. Two problems arise here. First,
two sensors, current and voltage, are required per
module which increase the levelized energy cost.
Second, the coupling effect between PV modules is
not addressed by this distributed control.

160

N ES w/ inner control
— — —P&O w/ FOC
----- MPP
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The multivariable gradient-based ES design to MPPT
of the PV system can be used in Fig. 7. The ES gain,

Figure 7 presents a multivariable MPPT based on an ES
scheme with the following features:

M Asit is applied to micro-converter systems, characterized by

non-unimodal power, the design specializes in the issue of
module mismatch—for example, different irradiance levels
as a result of partially shaded conditions.

The use of the non-model-based ES technique enables the
design to respond robustly even with partial knowledge of
system parameters and operating conditions.

More efficient and cost-effective than a scalar design,
the multivariable model requires just 2 sensors—one for
the overall PV system current, and another for DC bus
voltage—a significant hardware cost reduction.

Interactions between PV modules are inherent to the
multivariable design, so the transient performance is less
sensitive to variations in environmental conditions than
a corresponding scalar model.

Gradient-Based ES
Maximizing the power generated by all PV modules is equal to
P=Y" P =Vil. 10

For a micro-converter structure including n PV modules in
cascade connection, there exists D* € [&" such that

(%)(D*)=0, ng’z(D*):H<0, H=H" 1
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K, is a positive diagonal matrix, and the perturba-
tion signals are defined as equations 2 and 3.

In particular, the design derives an estimate G
of the gradient vector by adding the “probing signal”
S(#) to the estimate D = [ Dy, D, - -, D,]" of the pulse
duration vector (of all the DC/DC converters). With
no additional information on the Hessian (and also
for simplicity), we choose the amplitudes of the
probing signals to all be the same value a. It can be
shown that for a proper set of ES parameters and
with K > 0, the estimate D of the pulse duration
vector and the output P settle in a small ball around
the optimal pulse duration D*= [D{,D5,---,D,]"
and the MPP P(D"), respectively. The lowest
probing frequency and its corresponding amplitude
define the radius of the ball.

Since the cost function P varies with irradiance,
temperature, and degradation of the PV modules,
so does H, and therefore a fixed adaptation gain K
results in different (condition dependent) conver-
gence rates for each converter. In order to alleviate
the issue of unknown Hessian dependent conver-
gence, we present in the next section a modified
version of the multivariable Newton-based ES. The
Newton-based algorithm makes the convergence
rate of the parameter estimates user-assignable.

In particular, all the parameters can be designed
to converge with the same speed, yielding straight
trajectories to the extremum even with maps that
have highly elongated level sets. When applied to
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FIGURE 8 Multivariable Newton-based ES for MPPT of a PV system. The purple part is
added to the gradient-based ES to estimate the Hessian.

the MPPT problem in PV systems, the method offers the benefit of uniform The goal of the Newton-based design
convergence behavior, under a wide range of working conditions that in- is to replace the estimation-error
clude temperature and irradiance variations, and under the non-symmetric dynamics D = KHD with one of the
power generation of the neighboring PV modules as a result of module form D = -KTHD, where I' = H, that
degradation or mismatch. removes the dependence on the Hessian
H. Calculating I' (estimate of H~!) in an
Newton-Based ES algebraic fashion creates difficulties when
The multivariable Newton-based ES that we propose is shown schemati- H is close to singularity or is indefinite.
cally in Figure 8. As is clear from the figure, the proposed scheme extends To deal with this problem, a dynamic
the gradient-based ES with the estimate of the Hessian. The perturbation estimator is employed to calculate the
matrix is defined as equation 5. inverse of H using a Riccati equation.

Consider the following filter

H=—pH+pH 12

FIGURE 9 Experimental setup. Note that the state of this filter converges

1 DCBus 4CP1104 to H, an estimate of H. Denote I' = H™"
2 DC/DC Converters,1and 2 S Oscope Since I' = — Fﬂ:[l’, then equation 12 is
3 PV Panels,1and 2 6 DS 1104, Simulink and Control Desk

transformed into the differential Riccati
equation

I'spI'—plAl’. 13

After a transient, the Riccati equation
converges to the actual value of the
inverse of Hessian matrix if H is a good
estimate of H.

The convergence rate of the parameter
is independent of the shape of the cost
function, and consequently, after tran-
sient, when the Hessian is close enough
to its actual value, the output power
converges to the MPP with the same
performance regardless of environmental
or mismatch conditions.
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FIGURE 10 Variation of power versus time. The Newton algorithm shows uniform and fast transient

with low steady-state error.

Experimental Results

To show the effectiveness of the proposed Newton-based design in Fig. 8,
and compare its performance with that of the gradient-based design, we
present experimental results for a PV system with n = 2 cascade modules.
The physical hardware setup is shown in Figure 9. The temperature of
PV modules is 25 °C and the modules are fully exposed to the sun between
0-60 s and 120-180 s. To simulate the effect of partial shading, PV1 is cov-
ered with a plastic mat from time 60-120 s. When one module is partially
shaded the overall power level decreases. We not only compare the multi-
variable gradient-based and Newton-based designs, but also the traditional
scalar gradient-based design, that has one MPPT loop for each converter.

Figure 10 shows the performance of the 3 designs, and it is clear that
the Newton algorithm recovers from this power level change faster than the
other 2 algorithms. While the Newton method has the least steady-state
error and uniform response under step down and step up power scenarios,
the scalar design has the highest steady-state error and large response time
in face of power decrease. The multivariable gradient-based ES performs
better than the scalar MPPT under partial shading conditions.

The irradiance level of the partially shaded module is returned to normal
level at t = 120 s. At this point the Newton scheme shows faster transient in
comparison to the similar transient of the multivariable gradient-based ES
and the distributed ES. The results demonstrate that the convergence rate
of the Newton scheme does not vary largely from step up to step down in
power generation, which is not true for the gradient-based and distributed
MPPT schemes. Not surprisingly, the experimental results are in keeping
with the analytical results.

CONCLUDING REMARKS

s ince environmental parameters like solar irradiance and wind speed
affect the power map and maximum power point (MPP) of photovoltaic
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(PV) and wind energy conversion systems
(WECS), we propose extremum-seeking
(ES), which is a model-free real-time
optimization algorithm, for maximum
energy harvest or maximum-power-point-
tracking (MPPT) in such systems.

Extremum seeking is effective at guid-
ing the WECS to its MPP in the sub-rated
power region. However, the open-loop
dynamics of the WECS have slow left
half-plane poles that make the response
time of the ES even slower. In order to
achieve fast closed-loop response and
extra features like constant voltage-to-
frequency or vector control in the system,
we design an inner-loop control based on
the field-oriented control (FOC) concept.
The combination of the inner-loop con-
troller and the ES algorithm improves the
performance of the WECS, as shown by
the simulations.

For PVs, we consider the micro-
converter architecture, where each
module is connected to its own DC-DC
converter. Conventional designs are
scalar. First, they ignore the interaction
between modules, and secondly, they
require two (sensor) measurements
per module. A multivariable design that
improves on each of these aspects is
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