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EXTREMUM SEEKING
FOR WIND AND SOLAR ENERGY

APPLICATIONSby Azad Ghaffari, Miroslav Krstic and Sridhar Seshagiri

E
xtremum seeking (ES) was invented in 
1922 and is one of the oldest feedback 
methods. Rather than regulation, its 
purpose is optimization. For this reason, 
applications of ES have often come 
from energy systems. The first noted 

publication on ES in the West is Draper and 
Li's application to spark timing optimization in 
internal combustion engines1. In the ensuing 
decades, ES has been applied to gas turbines 
and even nuclear fusion reactors. Renew-
able energy applications have brought a new 
focus on the capabilities of ES algorithms. 
In this article we present applications of ES in 
two types of energy conversion systems for 
renewable energy sources: wind and solar 
energy. The goal for both is maximum power 
point tracking (MPPT), or, the extraction of 
the maximum feasible energy from the 
system under uncertainty and in the absence 
of a priori modeling knowledge about the 
systems. For the wind energy conversion 
system (WECS), MPPT is performed by 
tuning the set point for the turbine speed 
using scalar ES. Performing MPPT for the 
photovoltaic (PV) array system entails tuning 
the duty cycles of the DC/DC converters 
employed in the system using multivariable 
ES. Experimental results are provided for the 
photovoltaic system.

Increasing availability of energy storage devices intensi-
¿�HV�WKH�H �̆RUW�WR�KDUYHVW�PD[LPXP�SRZHU�IURP�UHQHZDEOH�
VRXUFHV��SDUWLFXODUO\�ZLQG�WXUELQHV��:7��DQG�39�V\VWHPV��
5HQHZDEOH�VRXUFHV�RSHUDWH�XQGHU�D�ZLGH�UDQJH�RI�XQFHUWDLQ�
HQYLURQPHQWDO�SDUDPHWHUV�DQG�GLVWXUEDQFHV��)RU�H[DPSOH��
XQFHUWDLQ�TXDQWLWLHV�VXFK�DV�ZLQG�VSHHG�LQ�:7�DQG�VRODU�
LUUDGLDQFH�LQ�39�PRGXOHV�D �̆HFW�WKH�UHVSHFWLYH�SRZHU�PDSV�
DQG�WKH�PD[LPXP�SRZHU�SRLQWV��033���7KH�SRZHU�PDS�LV�
DOVR�D�IXQFWLRQ�RI�D�FRQWURO�LQSXW²WKH�WXUELQH�VSHHG�LQ�:7�
DQG�WKH�WHUPLQDO�YROWDJH�LQ�WKH�39�PRGXOHV��7KH�SRZHU�PDS�
RI�D�:7�KDV�D�XQLTXH�033�ZLWK�UHVSHFW�WR�WXUELQH�VSHHG�DW�
HDFK�OHYHO�RI�ZLQG�VSHHG��/LNHZLVH��WKH�SRZHU�PDS�RI�D�39�
PRGXOH�KDV�D�XQLTXH�033�ZLWK�UHVSHFW�WR�WHUPLQDO�YROWDJH�
DW�HDFK�OHYHO�RI�VRODU�LUUDGLDQFH��
7KH�SURFHVV�RI�JRYHUQLQJ�D�:7�RU�39�PRGXOH�WR�LWV�033�

LV�NQRZ�DV�PD[LPXP�SRZHU�SRLQW�WUDFNLQJ��0337���7KH�
FRQYHQWLRQDO�SHUWXUE�DQG�REVHUYH��3	2��WHFKQLTXHV�GR�
VR�E\�D�FRPELQDWLRQ�RI�DGGLQJ�D�VWHS�SHUWXUEDWLRQ�WR�WKH�
FRQWURO�VLJQDO�DQG�PRQLWRULQJ�WKH�GLUHFWLRQ�RI�FKDQJHV�LQ�
SRZHU�2��0RVW�WHFKQLTXHV�GHULYHG�IURP�3	2�DUH�EDVHG�RQ�
GLVFUHWH�DQDO\VLV�DQG�UHTXLUH�D�GHOLFDWH�EDODQFH�EHWZHHQ�
WKH�DPSOLWXGH�RI�WKH�FRQWURO�LQSXW�VWHS�SHUWXUEDWLRQ�DQG�
WKH�SRVVLEOH�FKDQJHV�LQ�HQYLURQPHQWDO�SDUDPHWHUV��0RUH�
RYHU��WKH�VDPSOLQJ�IUHTXHQF\�QHHGV�WR�EH�FDUHIXOO\�VHOHFWHG�
ZLWK�UHVSHFW�WR�WKH�UHVSRQVH�WLPH�RI�WKH�V\VWHP�WR�WKH�VWHS�
SHUWXUEDWLRQ��6LQFH�WKH�V\VWHP�LV�QRW�OLQHDU��WKH�VDPSOLQJ�
IUHTXHQF\�LV�DOVR�D�IXQFWLRQ�RI�WKH�VWHS�VL]H�DQG�RI�WKH�
PDJQLWXGH�RI�FKDQJHV�LQ�HQYLURQPHQWDO�SDUDPHWHUV�
([WUHPXP�VHHNLQJ�LV�DQ�DWWUDFWLYH�DOWHUQDWLYH�WR�3	2�

WHFKQLTXHV�IRU�VROYLQJ�0337�SUREOHPV�LQ�ZLQG�DQG�VRODU�
V\VWHPV��$V�D�PRGHO�IUHH��UHDO�WLPH�RSWLPL]DWLRQ�DSSURDFK��
(6�LV�ZHOO�VXLWHG�IRU�V\VWHPV�ZLWK�XQNQRZQ�G\QDPLFV�RU�
WKRVH�WKDW�DUH�D �̆HFWHG�E\�KLJK�OHYHOV�RI�XQFHUWDLQW\�RU�
H[WHUQDO�G\QDPLFV��OLNH�:7�DQG�39�V\VWHPV��6LPLODU�WR�
3	2�WHFKQLTXHV��(6�HPSOR\V�SHUWXUEDWLRQV��+RZHYHU��
LQVWHDG�RI�HPSOR\LQJ�D�GLVFUHWH�VWHS�SHUWXUEDWLRQ��(6�XVHV�D�
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continuous oscillatory perturbation, also known as a 
“probing function.” More importantly, ES does not merely 
monitor the direction of the output response but exploits 
the measured response to estimate the gradient of the power 
map and update the control input in proportion to the gradi-
ent of the power map3–6. 
(6�KDV�WKH�GXDO�EHQH¿W�RI�ULJRURXVO\�SURYDEOH�FRQYHUJHQFH�

and the simplicity of hardware implementation. In addition 
to a probing signal, the ES algorithm employs only an inte-
JUDWRU��DV�ZHOO�DV�RSWLRQDO�KLJK�SDVV�DQG�D�ORZ�SDVV�¿OWHUV��
The amplitude and frequency of the probing function in ES 
LQÀXHQFH�WKH�SUHFLVLRQ�RI�WKH�0337�DOJRULWKP��+RZHYHU��
the frequency selection is not as complicated as the selection 
RI�WKH�VDPSOLQJ�IUHTXHQF\�LQ�3	2�WHFKQLTXH��)RU�G\QDPLF�
systems, it is enough to select the ES probing frequency 
reasonably smaller than the highest frequency that can pass 
WKH�V\VWHP�ZLWKRXW�VLJQL¿FDQW�DWWHQXDWLRQ��
(6�JXLGHV�WKH�V\VWHP�WR�LWV�033�UHJDUGOHVV�RI�FKDQJHV�LQ�

HQYLURQPHQWDO�SDUDPHWHUV��DV�ORQJ�DV�WKH�FKDQJHV�DUH�VORZ��
:KLOH�WKH�SRZHU�PDS�VKDSH�GH¿QHV�WKH�FRQYHUJHQFH�UDWH�RI�
WKH�FRQYHQWLRQDO�JUDGLHQW�EDVHG�(6��ZH�DOVR�SUHVHQW�LQ�WKLV�
article more sophisticated schemes like the Newton-based 
(6�WR�DOOHYLDWH�WKH�LVVXH�RI�XQV\PPHWULFDO�WUDQVLHQWV7. 
,Q�VRPH�FDVHV�ZH�QHHG�DQ�LQQHU�ORRS�FRQWURO�WR�DFKLHYH�

desired closed-loop performance, for example, for speeding 
XS�WKH�FRQYHUJHQFH�UDWH�DQG�DOOHYLDWLQJ�PDJQHWLF�VDWXUDWLRQ�

LQ�:7�V\VWHPV��&RPELQLQJ�D�GLVFUHWH�0337�PHWKRG�VXFK�DV�
3	2�ZLWK�D�FRQWLQXRXV�LQQHU�ORRS�FRQWURO�FUHDWHV�D�K\EULG�
system that needs careful parameter selection, particularly  
the sampling period and perturbation amplitude. In contrast, 
(6�FDQ�EH�DSSOLHG�ZLWKRXW�PRGL¿FDWLRQV�WR�DQ\�V\VWHP�ZLWK�
a stabilizing inner-loop control. 
$�GLVWULEXWHG�0337�DUFKLWHFWXUH�LV�QRW�WKH�PRVW�ḢFLHQW�

RSWLRQ�IRU�KDQGOLQJ�D�PXOWLYDULDEOH�SRZHU�PDS��VXFK�DV�D�
FDVFDGH�39�FRQ¿JXUDWLRQ�ZLWK�RQH�FRQYHUWHU�SHU�PRGXOH��
)RU�PXOWLYDULDEOH�0337��WKH�FRPSOH[LW\�RI�3	2�DOJRULWKPV�
LQFUHDVHV�GUDPDWLFDOO\�ZLWK�WKH�VL]H�RI�WKH�LQSXW�YHFWRU��,Q�
FRQWUDVW��(6�WULYLDOO\�H[WHQGV�WR�PXOWLYDULDEOH�0337��ZLWK�
only a few restrictions in selecting the probing frequencies. 
)XUWKHUPRUH��ZLWK�(6�ZH�KDYH�WKH�RSWLRQ�RI�HPSOR\LQJ� 
WKH�DOJRULWKP¶V�1HZWRQ�EDVHG�YHUVLRQ�WR�DFKLHYH�WUDQVLHQWV� 
WKDW�DUH�V\PPHWULF�UHODWLYH�WR�WKH�SHDN�RI�WKH�033�DQG� 
uniform in speed for multiple modules.

This paper is organized as follows. The next section 
introduces both gradient and Newton-based ES schemes. 
Subsequently, a Scalar gradient-based ES is combined with 
D�QRQOLQHDU�LQQHU�ORRS�FRQWURO�GHYHORSHG�IURP�¿HOG�RULHQWHG�
FRQWURO��)2&��WR�DFKLHYH�SRZHU�FRQWURO�DQG�RSWLPL]DWLRQ�LQ�
:7��6LPXODWLRQ�UHVXOWV�GHPRQVWUDWH�WKH�H̆HFWLYHQHVV�RI�WKH�
SURSRVHG�DOJRULWKP��)LQDOO\��PXOWLYDULDEOH�0337�EDVHG�
RQ�(6�IRU�39�V\VWHPV�DUH�SUHVHQWHG��DQG�WKH�YDOLGLW\�RI�WKH�
SURSRVHG�DOJRULWKPV�ZLWK�H[SHULPHQWDO�UHVXOWV�DUH�YHUL¿HG�

THE BASICS OF EXTREMUM SEEKING

A gradient-based ES for multi-input static maps  
is shown in Figure 1. The algorithm measures  

the scalar signal y(t) = Q(ș�(t)) , where Q (.)  is 
DQ�XQNQRZQ�PDS�ZKRVH�LQSXW�LV�WKH�YHFWRU�  
ș =  [ ș1,ș2, . . . ,șn] T. The map has a unique maxi- 
mum point at  ș
�=��[ ș1

*,ș*, . . . ,șn* ]7 ��where 

           �4�(ș*) = 0,   �24�(ș*) = H < 0,  +� �+7�����������1
������������ ������������������������02

ZKHUH�+�LV�WKH�+HVVLDQ�PDWUL[�DQG�GH¿QHV�WKH�VKDSH� 
of the unknown map around its maximum point. 

Gradient estimation is helped by the signals

                      2

          3

with nonzero perturbation amplitudes aL�  and with 
a gain matrix K that is diagonal. Some restrictions 
are imposed on the probing frequencies, ǔi ��)RU� 
the unknown map, Q (.) ��WKH�DYHUDJHG�V\VWHP�LV

        4

ZKHUH���DQG��LV�DQ�HVWLPDWH�RI�WKH�RSWLPDO�LQSXW�YHFWRU����,I�WKH� 
XVHU�FKRRVHV�WKH�HOHPHQWV�RI�WKH�GLDJRQDO�JDLQ�PDWUL[��DV�SRVLWLYH��
WKH�(6�DOJRULWKP�LV�JXDUDQWHHG�WR�EH�ORFDOO\�FRQYHUJHQW��+RZHYHU��
WKH�FRQYHUJHQFH�UDWH�GHSHQGV�RQ�WKH�XQNQRZQ�+HVVLDQ�H. This 
ZHDNQHVV�RI�WKH�JUDGLHQW�EDVHG�(6�DOJRULWKP�LV�UHPRYHG�ZLWK� 
the Newton-based ES algorithm.
$�1HZWRQ�YHUVLRQ�RI�WKH�(6�DOJRULWKP��VKRZQ�LQ�Figure 2, 

HQVXUHV�WKDW�WKH�FRQYHUJHQFH�UDWH�EH�XVHU�DVVLJQDEOH��UDWKHU� 

+

Q(·)

× M(t)S(t)
K

s

yθ

Ĝθ̂

1

FIGURE 1  The gradient-based ES for a static map.
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For Region II MPPT the turbine power is 
related to the wind power as    

                                                                       8

where T
t  

is the rotor torque, ǔt is the turbine 
speed, and Cp is the non-dimensional power 
FRḢFLHQW��ZKLFK�LV�D�PHDVXUH�RI�WKH�UDWLR�RI�
the turbine power to the wind power. 

The turbine speed can be used to change 
WKH�SRZHU�FRḢFLHQW��Cp, which results in 
power control and optimization. The MPPT 
algorithm in sub-rated power region should 
be able to guide the WT to its MPP regard-
OHVV�RI�WKH�YDULDWLRQV�RI�WKH�ZLQG�VSHHG��7KH�
SRZHU�FDSWXUHG�E\�WKH�:7�LV�GH¿QHG�E\�WKH�
wind speed,Vw, and the turbine speed,ǔt.  
The wind speed is a disturbance input and 
the turbine speed can be manipulated to  
JRYHUQ�WKH�WXUELQH�SRZHU�WR�LWV�033�LQ�VXE�
UDWHG�UHJLRQ��7KH�YDULDWLRQ�RI�WXUELQH�SRZHU�
YHUVXV�WXUELQH�VSHHG�LV�VKRZQ�LQ�Figure 4 
IRU�GL̆HUHQW�ZLQG�VSHHGV��$V�VKRZQ�LQ�)LJ��
���XQGHU�D�FRQVWDQW�ZLQG�VSHHG�WKH�UHOHYDQW�
SRZHU�FXUYH�KDV�D�XQLTXH�033��ZKLFK�LV�
GH¿QHG�E\�D�VSHFL¿F�WXUELQH�VSHHG��

Inner-Loop Control Design for WECS
2QH�FDQ�PDQLSXODWH�WKH�VWDWRU�YROWDJH�
amplitude,Vom��DQG�LWV�IUHTXHQF\�ǔo, to  
REWDLQ�WKH�GHVLUHG�FORVHG�ORRS�SHUIRUPDQFH�
IRU�:(&6��:H�LQWURGXFH�DQ�LQWHJUDWRU� 

+

Q(·)

×
Ĝ

M(t)S(t)

K

s

N(t)×Γ̇ = ρΓ− ρΓĤΓ

−ΓĜ

yθ

θ̂

Ĥ

1

FIGURE 2  A Newton-based ES for a static map.

FIGURE 3  Typical power curve of WT including
four operating regions.

WKDQ�EHLQJ�GHSHQGHQW�RQ�WKH�XQNQRZQ�+HVVLDQ�RI�WKH�PDS 7. The  
HOHPHQWV�RI�WKH�GHPRGXODWLQJ�PDWUL[�N(t�� IRU�JHQHUDWLQJ�WKH� 
HVWLPDWH�RI�WKH�+HVVLDQ�DUH�JLYHQ�E\

                                          .    .   5

7KH�PXOWLSOLFDWLYH�H[FLWDWLRQ�KHOSV�WR�JHQHUDWH�WKH�HVWLPDWH�RI�WKH� 
Hessian as H ̂   (t) = N(t) y(t���7KH�5LFFDWL�PDUWUL[�GL̆HUHQWLDO�HTXDWLRQ 
ī(t��JHQHUDWHV�DQ�HVWLPDWH�RI�WKH�+HVVLDQ¶V�LQYHUVH�PDWUL[��DYRLGLQJ� 
PDWUL[�LQYHUVLRQV�RI�+HVVLDQ�HVWLPDWHV�WKDW�PD\�EH�VLQJXODU�GXULQJ� 
the transient.
$�TXDGUDWLF�PDS
V�DYHUDJHG�V\VWHP�LQ�HUURU�YDULDEOHV ș

 ࡆ
= ș ̂  — ș*,  

ī
 ࡆ
= ī — H

-1  is
                   6

Because they are determined by K and Ǐ, WKH�HLJHQYDOXHV�DUH  
LQGHSHQGHQW�RI�WKH�XQNQRZQ�H. $V�D�UHVXOW� the (local) FRQYHUJHQFH 
rate is user-assignable.
(6�H[WHQGV�LQ�D�UHODWLYHO\�VWUDLJKWIRUZDUG�PDQQHU�IURP�VWDWLF� 

PDSV�WR�G\QDPLF�V\VWHPV��SURYLGHG�WKH�G\QDPLFV�DUH�VWDEOH�DQG� 
WKH�SDUDPHWHUV�RI�WKH�DOJRULWKP�DUH�FKRVHQ�VR�WKDW�WKH�G\QDPLFV� 
DUH�VORZHU�WKDQ�WKRVH�RI�WKH�SODQW�
,Q�WKH�IROORZLQJ�VHFWLRQ��WKH�VFDODU�JUDGLHQW�EDVHG�(6�LV�DSSOLHG� 

WR�0337�RI�D�ZLQG�HQHUJ\�FRQYHUVLRQ�V\VWHP��:(&6���ZLWK�DQ� 
inner-loop control. 

WIND ENERGY CONVERSION SYSTEMS

W LQG�WXUELQHV�ZRUN�LQ�IRXU�GL̆HUHQW�UHJLRQV��VHH�Figure 3).  
$YDLODEOH�ZLQG�SRZHU�RQ�WKH�EODGH�LPSDFW�DUHD�LV�GH¿QHG�DV

          7

where R is the blade length, Ǐ
a
 is air density, and V

w
 is wind speed.  
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and an auxiliary input, u2, to achieve input-output decoupling in WECS 
dynamics. Using one step of integration in front of Vom the extended  
equations of WECS are introduced as follows: 

                                                             
                          x  =  f (x) +  g1u1 +  g2u2,   x ࠵� 9, u ࠵� 2   9

where x = [ iĮ, iǃ, ǊĮ, 0o, Vom, ǔr, 0
ࡆ
, ǔt ]T   where  iĮ�and iǃ are stator currents, 

ǊĮ and  Ǌǃ �DUH�URWRU�ÀX[HV��0
ࡆ
 = șt   —  

0r 
, șr = �0

t

  
ǔrdt, ǔr is the rotor electrical 

frequency, u1 = ǔo is the electrical frequency of the stator, u2 is an auxiliary 
input (voltage amplitude rate) which generates the voltage amplitude of 
the stator.

As seen in Fig. 4, turbine speed controls power generation. Decoupling  
WKH�URWRU�ÀX[�DQG�HOHFWURPDJQHWLF�WRUTXH�SURGXFHV�WKH�EHQH¿W�RI�¿HOG�
oriented control (FOC). Turbine speed, x9��DQG�ÀX[�DPSOLWXGH��x 

2
3 +  x 

2
4 , are 

introduced as measurable outputs for this reason. Feedback linearization  
is applied based on the selected outputs. This results in the regulation of  
turbine speed, ǔt, to its reference value ǔ

t

ref, while the amplitude of rotor 
ÀX[�� |Ǌ | =                 , converges to its desired value, |Ǌ |ref.

Wind Turbine Power Optimization
To overcome challenges associated with the conventional power control  
and optimization algorithms and to remove the dependence of the MPPT 
DOJRULWKP�RQ�V\VWHP�PRGHOLQJ�DQG�LGHQWL¿FDWLRQ��DQ�(6�DOJRULWKP�IRU� 
MPPT of WECS is employed. 

Access to turbine power measurements and speed manipulation are  
DVVXPHG�LQ�WKLV�DUWLFOH��$OWKRXJK�WKHUH�LV�QR�PRGHO�RI�WKH�SRZHU�FRḢFLHQW� 
or turbine power, its power map has one MPP under any wind speed.

The proposed nonlinear control not only achieves the desired closed- 
ORRS�SHUIRUPDQFH��EXW�IDVWHU�UHVSRQVH�WLPH��KLJK�SRZHU�ḢFLHQF\��DV�LW 
also prevents magnetic saturation. The ES scheme with inner-loop control  

is shown in Figure 5. Shown here, the refer-
ence inputs of the inner-loop control are ǔ

t

ref  
and |Ǌ |ref. The MPP is parameterized by the 
optimal turbine speed at each wind speed, as 
estimated by the ES loop. The other control 
input, |Ǌ |ref��GH¿QHV�WKH�OHYHO�RI�WKH�ÀX[�OLQNDJH�
of the rotor which prevents induction genera-
tor from magnetic saturation.

Combination of the Controller and WECS 
results in fast dynamics, while the dynamics 
contained in the ES algorithm are of slow and 
medium speeds. The algorithm estimates the 
optimal turbine speed, ǔ

t

ref = ǔ
t
* . With respect 

to the controller-system's fast dynamics, this 
can be considered a constant value. 

Simulation Results on a WECS Model
A time frame of 30 seconds demonstrates the 
GL̆HUHQFHV�EHWZHHQ�WKH�SURSRVHG�DOJRULWKP�
and that of the conventional MPPT which is 
based on P&O with an FOC in the inner loop. 
The MPPT process is shown in Figure 6.  
The extracted energy by our proposed  
algorithm is 2.36% higher than the extracted 
energy by the conventional MPPT and FOC. 
Our algorithm provides perfect input-output 
decoupling and guarantees a larger domain 
of attraction, which increases performance 
robustness with respect to the system param-
HWHUV��7KH�LPSURYHG�ḢFLHQF\�DOVR�LQFUHDVHV�
the competitiveness of wind energy.

PHOTOVOLTAIC SYSTEMS

Extremum seeking has been applied to  
MPPT design for photovoltaic (PV) micro-

converter systems, where each PV module 
is coupled with its own DC/DC converter. 
Most existing MPPT designs are distributed 
(decentralized), i.e., they employ one MPPT 
loop around each converter, and all designs, 
whether distributed or multivariable, are 
gradient-based2. The convergence rate of  
gradient-based designs depends on the  
Hessian, which in turn is dependent on envi-
ronmental conditions such as irradiance and 
temperature. Consequently, when applied to 
large PV arrays, the variability in conditions, 
and/or PV module degradation, results in 
non-uniform transients in the convergence 
to the MPP. Using a multivariable gradient-
based ES algorithm for the entire system 
instead of a scalar one for each PV module, 
decreases sensitivity to the Hessian, but does 
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FIGURE 4  Variation of the turbine power versus 
turbine speed for different wind speeds.
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not eliminate this dependence. The Newton-based ES algorithm is 
used, as it simultaneously employs estimates of the gradient and 
Hessian in the peak power tracking. The convergence rate of such 
a design to the MPP is independent of the Hessian, with tunable 
transient performance that is independent of environmental  
FRQGLWLRQV��([SHULPHQWDO�UHVXOWV�GHPRQVWUDWH�WKH�H̆HFWLYHQHVV� 
of the proposed algorithm in comparison to existing scalar  
designs, as well as multivariable, gradient-based ES.

Using a multivariable gradient-based ES MPPT design for the 
micro-converter architecture, where each PV module is coupled 
with its own DC/DC converter, reduces the number of required 
sensors (hardware reduction). Transients under sudden changes 
in solar irradiance are more uniform as is the environmental tem-
perature in comparison to a scalar gradient-based ES for each  
PV module. True of gradient-based designs, the convergence to 
MPP is dependent on the unknown Hessian: it varies with irradi-
ance, temperature, and module degradation and mismatch.

In comparison with the standard gradient-based multivariable 
extremum seeking, the Newton-based ES removes the depen-
dence of the convergence rate on the unknown Hessian and 
makes the convergence rate of the parameter estimates user-
assignable. In particular, all the parameters can be designed to 
converge with the same speed, yielding straight trajectories to  
the extremum even with maps that have highly elongated level 
sets. When applied to the MPPT problem in PV systems, the 
PHWKRG�R̆HUV�WKH�EHQH¿W�RI�XQLIRUP�
convergence behavior under a wide 
range of working conditions that 
includes temperature and irradiance 
variations and the non-symmetric 
power generation of the neighboring 
PV modules as a result of module 
degradation or mismatch.

Multivariable MPPT of PV Systems 
Conventionally, each DC/DC converter has a 
MPPT loop to extract maximum power from the 
PV system (known as power optimizer in industry). 
The output sides of the converters are connected 
in series. The PV system is connected to the power 
grid through a DC/AC inverter, which has its 
separate controller. Two problems arise here. First, 
two sensors, current and voltage, are required per 
module which increase the levelized energy cost. 
6HFRQG��WKH�FRXSOLQJ�H̆HFW�EHWZHHQ�39�PRGXOHV�LV�
not addressed by this distributed control. 

FIGURE 5  The ES algorithm for MPPT of the WECS with the inner-loop control.
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(dashed black) .
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Figure 7 presents a multivariable MPPT based on an ES  
scheme with the following features:

Q As it is applied to micro-converter systems, characterized by  
         non-unimodal power, the design specializes in the issue of  
���������PRGXOH�PLVPDWFK²IRU�H[DPSOH��GL̆HUHQW�LUUDGLDQFH�OHYHOV�� 
         as a result of partially shaded conditions.

Q The use of the non-model-based ES technique enables the  
          design  to respond robustly even with partial knowledge of  
          system parameters and operating conditions. 

Q 0RUH�ḢFLHQW�DQG�FRVW�H̆HFWLYH�WKDQ�D�VFDODU�GHVLJQ�� 
          the multivariable model requires just 2 sensors—one for  
          the overall  PV system current, and another for DC bus  
����������YROWDJH²D�VLJQL¿FDQW�KDUGZDUH�FRVW�UHGXFWLRQ��

Q Interactions between PV modules are inherent to the  
         multivariable design, so the transient performance is less  
         sensitive to variations in environmental conditions than 
         a corresponding scalar model. 

Gradient-Based ES
Maximizing the power generated by all PV modules is equal to

                        P =    
i

n

=1 Pi  = Vdc Idc  .                  10

For a micro-converter structure including n PV modules in  
cascade connection, there exists D*             n such that 

                                                                                                       11
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The multivariable gradient-based ES design to MPPT 
of the PV system can be used in Fig. 7. The ES gain, 
K, is a positive diagonal matrix, and the perturba-
WLRQ�VLJQDOV�DUH�GH¿QHG�DV�HTXDWLRQV�2 and 3.

In particular, the design derives an estimate  G^    
of the gradient vector by adding the “probing signal” 
S(t) to the estimate D ̂  =  [ D ̂ 1,D

 ̂ 
2, . . ., D

 ̂ 
n] T of the pulse 

duration vector (of all the DC/DC converters). With 
no additional information on the Hessian (and also 
for simplicity), we choose the amplitudes of the 
probing signals to all be the same value a. It can be 
shown that for a proper set of ES parameters and 
with K > 0, the estimate D ̂  of the pulse duration  
vector and the output P settle in a small ball around 
the optimal pulse duration D* =  [ D1

*,D2
*, . . . ,Dn

* ] T 
and the MPP P(D*), respectively. The lowest  
probing frequency and its corresponding amplitude 
GH¿QH�WKH�UDGLXV�RI�WKH�EDOO�

Since the cost function P  varies with irradiance, 
temperature, and degradation of the PV modules,  
so does H��DQG�WKHUHIRUH�D�¿[HG�DGDSWDWLRQ�JDLQ�K 

UHVXOWV�LQ�GL̆HUHQW��FRQGLWLRQ�GHSHQGHQW��FRQYHU-
gence rates for each converter. In order to alleviate 
the issue of unknown Hessian dependent conver-
JHQFH��ZH�SUHVHQW�LQ�WKH�QH[W�VHFWLRQ�D�PRGL¿HG�
version of the multivariable Newton-based ES. The 
Newton-based algorithm makes the convergence 
rate of the parameter estimates user-assignable. 
In particular, all the parameters can be designed 
to converge with the same speed, yielding straight 
trajectories to the extremum even with maps that 
have highly elongated level sets. When applied to 

FIGURE 7
Multivariable MPPT for
a PV system. One MPPT is
used for the entire system. 
Temperature, and irradiance,  
vary all over the modules.

FIGURE 9  Experimental setup.  

(D*) = 0,   �
2
P (D*) = H < 0,    H = HT

.�D �D
2

�P
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Ĝ

Γ̇ = ρΓ − ρΓĤΓ
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WKH�0337�SUREOHP�LQ�39�V\VWHPV��WKH�PHWKRG�R̆HUV�WKH�EHQH¿W�RI�XQLIRUP�
FRQYHUJHQFH�EHKDYLRU��XQGHU�D�ZLGH�UDQJH�RI�ZRUNLQJ�FRQGLWLRQV�WKDW�LQ-
FOXGH�WHPSHUDWXUH�DQG�LUUDGLDQFH�YDULDWLRQV��DQG�XQGHU�WKH�QRQ�V\PPHWULF�
SRZHU�JHQHUDWLRQ�RI�WKH�QHLJKERULQJ�39�PRGXOHV�DV�D�UHVXOW�RI�PRGXOH�
degradation or mismatch.

Newton-Based ES
7KH�PXOWLYDULDEOH�1HZWRQ�EDVHG�(6�WKDW�ZH�SURSRVH�LV�VKRZQ�VFKHPDWL-
cally in Figure 8��$V�LV�FOHDU�IURP�WKH�¿JXUH��WKH�SURSRVHG�VFKHPH�H[WHQGV�
WKH�JUDGLHQW�EDVHG�(6�ZLWK�WKH�HVWLPDWH��RI�WKH�+HVVLDQ��7KH�SHUWXUEDWLRQ�
PDWUL[��LV�GH¿QHG�DV�HTXDWLRQ�5.

7KH�JRDO�RI�WKH�1HZWRQ�EDVHG�GHVLJQ� 
is to replace the estimation-error  
dynamics D

ࡆ
  = KHD

ࡆ
��ZLWK�RQH�RI�WKH�

IRUP�D
ࡆ
 
 
= –.ī+D

ࡆ
���ZKHUH�ī = H–1, that 

UHPRYHV�WKH�GHSHQGHQFH�RQ�WKH�+HVVLDQ�
H . &DOFXODWLQJ��ī��HVWLPDWH�RI��H–1 ) in an 
DOJHEUDLF�IDVKLRQ�FUHDWHV�GL̇FXOWLHV�ZKHQ�
H
 ̂ � LV�FORVH�WR�VLQJXODULW\�RU�LV�LQGH¿QLWH�� 
7R�GHDO�ZLWK�WKLV�SUREOHP��D�G\QDPLF� 
HVWLPDWRU�LV�HPSOR\HG�WR�FDOFXODWH�WKH�
LQYHUVH�RI�H ̂ �XVLQJ�D�5LFFDWL�HTXDWLRQ�
&RQVLGHU�WKH�IROORZLQJ�¿OWHU

                         = —Ǐ�� � �Ǐ+ ̂           12

1RWH�WKDW�WKH�VWDWH�RI�WKLV�¿OWHU�FRQYHUJHV�
to H ̂ ��DQ�HVWLPDWH�RI�H. Denote ī = H–1. 
6LQFH�ī�= —ī�����ī��WKHQ�HTXDWLRQ�12  is 
WUDQVIRUPHG�LQWR�WKH�GL̆HUHQWLDO�5LFFDWL�
HTXDWLRQ
���������������������ī�= Ǐ�ī�— Ǐī+ ̂ ī .       13 

$IWHU�D�WUDQVLHQW��WKH�5LFFDWL�HTXDWLRQ�
FRQYHUJHV�WR�WKH�DFWXDO�YDOXH�RI�WKH� 
LQYHUVH�RI�+HVVLDQ�PDWUL[�LI�H ̂  is a good 
HVWLPDWH�RI�H.
7KH�FRQYHUJHQFH�UDWH�RI�WKH�SDUDPHWHU�

LV�LQGHSHQGHQW�RI�WKH�VKDSH�RI�WKH�FRVW�
IXQFWLRQ��DQG�FRQVHTXHQWO\��DIWHU�WUDQ-
VLHQW��ZKHQ�WKH�+HVVLDQ�LV�FORVH�HQRXJK�
WR�LWV�DFWXDO�YDOXH��WKH�RXWSXW�SRZHU� 
FRQYHUJHV�WR�WKH�033�ZLWK�WKH�VDPH� 
SHUIRUPDQFH�UHJDUGOHVV�RI�HQYLURQPHQWDO�
or mismatch conditions. 

FIGURE 7
Multivariable MPPT for
a PV system. One MPPT is
used for the entire system. 
Temperature, and irradiance,  
vary all over the modules.

FIGURE 8  Multivariable Newton-based ES for MPPT of a PV system. The purple part is 
added to the gradient-based ES to estimate the Hessian.

. .
.

FIGURE 9  Experimental setup.  
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Experimental Results
7R�VKRZ�WKH�H̆HFWLYHQHVV�RI�WKH�SURSRVHG�1HZWRQ�EDVHG�GHVLJQ�LQ�)LJ�����
DQG�FRPSDUH�LWV�SHUIRUPDQFH�ZLWK�WKDW�RI�WKH�JUDGLHQW�EDVHG�GHVLJQ��ZH�
SUHVHQW�H[SHULPHQWDO�UHVXOWV�IRU�D�39�V\VWHP�ZLWK�n = 2�FDVFDGH�PRGXOHV��
7KH�SK\VLFDO�KDUGZDUH�VHWXS�LV�VKRZQ�LQ�Figure 9��7KH�WHPSHUDWXUH�RI�
39�PRGXOHV�LV�����&�DQG�WKH�PRGXOHV�DUH�IXOO\�H[SRVHG�WR�WKH�VXQ�EHWZHHQ�
�����V�DQG���������V��7R�VLPXODWH�WKH�H̆HFW�RI�SDUWLDO�VKDGLQJ��39��LV�FRY�
HUHG�ZLWK�D�SODVWLF�PDW�IURP�WLPH��������V��:KHQ�RQH�PRGXOH�LV�SDUWLDOO\�
VKDGHG�WKH�RYHUDOO�SRZHU�OHYHO�GHFUHDVHV��:H�QRW�RQO\�FRPSDUH�WKH�PXOWL�
YDULDEOH�JUDGLHQW�EDVHG�DQG�1HZWRQ�EDVHG�GHVLJQV��EXW�DOVR�WKH�WUDGLWLRQDO�
VFDODU�JUDGLHQW�EDVHG�GHVLJQ��WKDW�KDV�RQH�0337�ORRS�IRU�HDFK�FRQYHUWHU�

Figure 10�VKRZV�WKH�SHUIRUPDQFH�RI�WKH���GHVLJQV��DQG�LW�LV�FOHDU�WKDW�
WKH�1HZWRQ�DOJRULWKP�UHFRYHUV�IURP�WKLV�SRZHU�OHYHO�FKDQJH�IDVWHU�WKDQ�WKH�
RWKHU���DOJRULWKPV��:KLOH�WKH�1HZWRQ�PHWKRG�KDV�WKH�OHDVW�VWHDG\�VWDWH�
HUURU�DQG�XQLIRUP�UHVSRQVH�XQGHU�VWHS�GRZQ�DQG�VWHS�XS�SRZHU�VFHQDULRV��
WKH�VFDODU�GHVLJQ�KDV�WKH�KLJKHVW�VWHDG\�VWDWH�HUURU�DQG�ODUJH�UHVSRQVH�WLPH�
LQ�IDFH�RI�SRZHU�GHFUHDVH��7KH�PXOWLYDULDEOH�JUDGLHQW�EDVHG�(6�SHUIRUPV�
EHWWHU�WKDQ�WKH�VFDODU�0337�XQGHU�SDUWLDO�VKDGLQJ�FRQGLWLRQV�
7KH�LUUDGLDQFH�OHYHO�RI�WKH�SDUWLDOO\�VKDGHG�PRGXOH�LV�UHWXUQHG�WR�QRUPDO�

OHYHO�DW�t� �����V��$W�WKLV�SRLQW�WKH�1HZWRQ�VFKHPH�VKRZV�IDVWHU�WUDQVLHQW�LQ�
FRPSDULVRQ�WR�WKH�VLPLODU�WUDQVLHQW�RI�WKH�PXOWLYDULDEOH�JUDGLHQW�EDVHG�(6�
DQG�WKH�GLVWULEXWHG�(6��7KH�UHVXOWV�GHPRQVWUDWH�WKDW�WKH�FRQYHUJHQFH�UDWH�
RI�WKH�1HZWRQ�VFKHPH�GRHV�QRW�YDU\�ODUJHO\�IURP�VWHS�XS�WR�VWHS�GRZQ�LQ�
SRZHU�JHQHUDWLRQ��ZKLFK�LV�QRW�WUXH�IRU�WKH�JUDGLHQW�EDVHG�DQG�GLVWULEXWHG�
0337�VFKHPHV��1RW�VXUSULVLQJO\��WKH�H[SHULPHQWDO�UHVXOWV�DUH�LQ�NHHSLQJ�
ZLWK�WKH�DQDO\WLFDO�UHVXOWV�

CONCLUDING REMARKS

S LQFH�HQYLURQPHQWDO�SDUDPHWHUV�OLNH�VRODU�LUUDGLDQFH�DQG�ZLQG�VSHHG�
D̆HFW�WKH�SRZHU�PDS�DQG�PD[LPXP�SRZHU�SRLQW��033��RI�SKRWRYROWDLF�

�39��DQG�ZLQG�HQHUJ\�FRQYHUVLRQ�V\VWHPV�
�:(&6���ZH�SURSRVH�H[WUHPXP�VHHNLQJ�
�(6���ZKLFK�LV�D�PRGHO�IUHH�UHDO�WLPH�
RSWLPL]DWLRQ�DOJRULWKP��IRU�PD[LPXP�
HQHUJ\�KDUYHVW�RU�PD[LPXP�SRZHU�SRLQW�
WUDFNLQJ��0337��LQ�VXFK�V\VWHPV�
([WUHPXP�VHHNLQJ�LV�H̆HFWLYH�DW�JXLG�

LQJ�WKH�:(&6�WR�LWV�033�LQ�WKH�VXE�UDWHG�
SRZHU�UHJLRQ��+RZHYHU��WKH�RSHQ�ORRS�
G\QDPLFV�RI�WKH�:(&6�KDYH�VORZ�OHIW�
KDOI�SODQH�SROHV�WKDW�PDNH�WKH�UHVSRQVH�
WLPH�RI�WKH�(6�HYHQ�VORZHU��,Q�RUGHU�WR�
DFKLHYH�IDVW�FORVHG�ORRS�UHVSRQVH�DQG�
H[WUD�IHDWXUHV�OLNH�FRQVWDQW�YROWDJH�WR�
IUHTXHQF\�RU�YHFWRU�FRQWURO�LQ�WKH�V\VWHP��
ZH�GHVLJQ�DQ�LQQHU�ORRS�FRQWURO�EDVHG�RQ�
WKH�¿HOG�RULHQWHG�FRQWURO��)2&��FRQFHSW��
7KH�FRPELQDWLRQ�RI�WKH�LQQHU�ORRS�FRQ�
WUROOHU�DQG�WKH�(6�DOJRULWKP�LPSURYHV�WKH�
SHUIRUPDQFH�RI�WKH�:(&6��DV�VKRZQ�E\�
WKH�VLPXODWLRQV�
)RU�39V��ZH�FRQVLGHU�WKH�PLFUR� 

FRQYHUWHU�DUFKLWHFWXUH��ZKHUH�HDFK� 
PRGXOH�LV�FRQQHFWHG�WR�LWV�RZQ�'&�'&�
FRQYHUWHU��&RQYHQWLRQDO�GHVLJQV�DUH�
VFDODU��)LUVW��WKH\�LJQRUH�WKH�LQWHUDFWLRQ�
EHWZHHQ�PRGXOHV��DQG�VHFRQGO\��WKH\�
UHTXLUH�WZR��VHQVRU��PHDVXUHPHQWV� 
SHU�PRGXOH��$�PXOWLYDULDEOH�GHVLJQ�WKDW�
LPSURYHV�RQ�HDFK�RI�WKHVH�DVSHFWV�LV�

FIGURE 10  Variation of power versus time. The Newton algorithm shows uniform and fast transient 
with low steady-state error.
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proposed. A multivariable gradient-based ES algorithm was considered 
¿UVW��ZKHUH�WKH�+HVVLDQ�RI�WKH�SRZHU�PDS�KDV�D�GRPLQDQW�UROH�LQ�WKH�
FORVHG�ORRS�SHUIRUPDQFH��1H[W��D�1HZWRQ�EDVHG�(6�DOJRULWKP�ZDV� 
HPSOR\HG��ZKLFK�UHPRYHG�WKH�SHUIRUPDQFH�GHSHQGHQFH�RI�WKH�JUDGL-
HQW�EDVHG�GHVLJQ�RQ�WKH�+HVVLDQ��7KH�1HZWRQ�EDVHG�GHVLJQ�KDV�WZR�
GLVWLQJXLVKLQJ�FRPSRQHQWV�WKDW�DUH�NH\��D�SHUWXUEDWLRQ�PDWUL[�WKDW�
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