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Abst rac t  

An adaptive output feedback control scheme is p r e  
sented for output tracking of a class of continuous- 
time nonlinear plants. An FU3F neural network is used 
to adaptively compensate for the plant nonlinearities. 
The network weights are adapted using a Lyapunov- 
based design. The method uses parameter projection, 
control saturation, and a high-gain observer to achieve 
semi-global uniform ultimate boundedness. The effi- 
cacy of the proposed method is demonstrated through 
simulations. The simulations also show that by using 
adaptive control in conjunction with robust control, it 
is possible to tolerate larger approximation errors r e  
sulting from the use of lower-order networks. 

1 Introduction 

In recent years, the analytical study of adaptive non- 
linear control systems using universal function approx- 
imators has received much attention. Typically, these 
methods use neural networks as approximation models 
for the unknown system nonlinearities [2, 3, 5, 6, 71. 
A key assumption in most of these methods is that all 
the states of the plant are available for feedback. In 
[l], Aloliwi and Khalii developed an adaptive output 
feedback controller for a class of nonlinear systems and 
pointed out the potential application of their method 
to linear-in-the-weight neural networks. In this paper, 
we investigate the use of a radial basis function (RBF) 
neural network for the purpose. 

2 Problem Statement 

The system under consideration is represented by the 
following model(see [l]), with v being the control input 
and y the measured output: 

Assumption 1 IG(z,z)I 2 kl > 0 V z E R" and z E 
Rm . 

Assumption 1 ensures the existence a global Meomor- 
phism, 

with Tl(0,O) = 0, which transforms the last m state 
equations of (1) into ( = H ( C , z ) .  This, together with 
the first n state equations of (1) , defines a global normal 
form. The objective is to design an output feedback 
controller which guarantees that the output y and its 
derivatives up to  order n-1 track a given reference signal 
yr and its corresponding derivatives, while keeping all 
the states bounded. 

3 Function Approximation Using Gaussian 
Radial Basis Functions 

The control design presented in this paper employs an 
RBF neural network to approximate the functions F ( . )  
and G(.) over a compact region of t_he state space. RBF 
networks are of the general form F(.) = O T f ( . ) ,  where 
8 E RP is a vector of adjustable weights and f(.) a 
vector of Gaussian basis functions. It has been shown 
that given a smooth function F : R C) R, where R is 
a compact subset of Rm+" and E > 0, there exists a 
Gaussian basis function vector f : Rm+" t+ RP and a 
weight vector 8' E RP such that IF(%) - 8*Tf ( z ) l  5 
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E V z E 0. The quantity F ( z )  - P T f ( z )  ef d(z) 
is called the network reconstruction error. The 
optimal weight vector 8' defined above is a quantity 
required only for analytical purposes. Typically 8' is 
chosen as the value of 8 that minimizes d(z) over R. 
The choice of the Gaussian network parameters used 
in our control design is motivated by the discussion in 
[6, Section III]. The update law for the weight vector 8 
is derived in the next section. 

4 Control Design 

We start with the following representation for the func- 
tions F(.) and G(.), valid for all z E Y and z E 2, 
where Y and 2 are compact sets defined in Section 
4.1.1. 

F ( ~ , z )  = qTf ( z , z )  + MZ, z ) ,  
G(z,z) = e;Tg(z,z)  + dC(z1z) 

Assumption 2 The vectors 8; and 8; belong to known 
compact subsets Rf c RP1 and R, c R h .  

Typically, some off-line training is done to  obtain Val- 
ues O f o  and 8, that result in "good" approximations 
of the functions F and G over Y x 2. The sets Rf and 
R, are then chosen judiciously as compact sets that 
contain O f o  and ego. The fixed optimal weights 8; and 
8; in (2) are replaced by their time varying estimates 
df and 8,, that are adapted during learning. The net- 
work approximatiocs associated with these weights are 
denoted by F and G respectively. 

Assumption 3 IG(,)I 2 k 2  > 0 V 2 E Y, z E 
Z and do E fig, where fig is a compact set that contains 
R, in its interior. 

where' d(e+Yr,z,kff,dg) = d ~ ( . ) + d G ( - ) v ,  (A,b) and 
( A 2  , b) are controllable canonical pairs that represent 
chains of n and m integrators, respectively, and K is 
chosen such that A,,, = A - bK is Hurwitz. 

Assumption 4 The system ( = H(C, Y,) has a unique 
steady-state solution C. Moreover, with C = 6 - c the 
system 

t = H((:+ <,e + Yr) - H((:,Yr) 
e,  Yrl o 

771 11t1I2 5 Vl (t, t )  I 77211(112 

(4) 

has a continuously differentiable function VI (t ,  () that 
satisfies 

where q1 , q ~ ,  773 > 0, and 774 2 0 are independent of Yr. 

Assumption 4 implies that the zero dynamics of (1) are 
exponentially stable and (1) is minimum phase. 

4.1.1 State Feedback: Let P = PT > 0 be 
the solution of the Lyapunov equation PA, + AZP = 
-Q where Q = QT > 0, and consider the Lyapunov 
function candidate 

v = eTPe + ppp ,  + W r - l i j  a o g  g 

where ti$ = 8f -e;, 8, = 8, -8; and rf = r; > 0 and 
rg = r: > 0 are gains to be specified later. Taking 

and using (3), we have 

where 4f = 2eTPbf(e + Yryz) and 4, = 2eTPbg(e + 
yr,z)$(.) .  Let fif be a compact subset of RP* that 
contains Rf in its interior. Define 

r = diagpf,I',], R = Rf x R, and fi = fif x 6, 
The parameter adaptation law is chosen as in [4], i.e, 
8 = Proj(8, +), where Proj(8,4)=r4 for 8 E R and is 
modified outside R to  ensure that 

ijTr-l[i - r41 5 o (6) 
'The dependence on 8, and 6, comes through U. 
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F d  d(t) belongs to a compact set R6 V t 2 0, where 
0 3  0 6  3 n. 

We assume that e(0) and z(0) belong to known com- 
pact subsets EO c R" and 20 c Rm and let c1 = 
max,,EoeTPe. Choose c4 > c1 and define E gf 
{eTPe 5 c4} and Y zf {e + Yrle E E,Yr E YR}. 
Let Z be a compact subset of R" such that ZO is in 
the interior of 2 and 

z(0) E 20 and e(t) E E V t 2 0 =+ z ( t )  6 2 V t 2 0. 

The RBF networks are used to approximate F(.) and 
G(.) over the compact set Y x 2. 

Define 06, and 04, by Ra = Ra, x flap and let 

The adaptation gains I'f and rg are chosen large 
enough to ensure that c4 - c1 > c2 + c3. This is different 
from [l] where the adaptation gain is not required to be 
large. This is because, in the present case, the compact 
sets flf and Clg to which the optimal weights 6; and 0; 
belong depend on the set E ,  because the approxima- 
tion of F and G is done over the set Y x 2. Hence the 
set Y has to be defined prior to, and consequently, in- 
dependent of the sets Rf and n,. This requires making 
the adaptation gains large. 

Let d = mazlld(e + Yr,z18f,8g)ll , where the maxi- 
mization is done over all e + Yr E Y , z  E Z18f E 
Ra, and dg E Rag. Using (5) and (6), Ve E E, we have 

V 5 -eTQe + kdd, where kd = max2llell IIP  bll (7) 

If d c S = k(c4 - c3 - cZ)/kd , where k = m-, 
then V c 0 on {V = c4) n f lg .  Thus the set {V 5 
c4) n Ra is positively invariant for all d < d'. Inside 
this set, e E E.  As long as e,€ E ,  z will remain in 
2. Thus the trajectory (e,.,@) is trapped inside the 
set R, = {e E E }  x { z  E Z} x (8 E 06). Hence all 
the states are bounded and from (7), the mean-square 
tracking error is of the order O(d). 

eEE 

4.1.2 Output Feedback: To implement the 
controller developed in the previous section using out- 
put feedback, we replace the states e by their estimates 
2 provided by a high gain observer (HGO). The con- 
trol is saturated outside a compact region of interest 
to prevent the peaking induced by the HGO [4]. The 
HGO used t o  estimate the states is the same one used 

in [4] and is described by the following equations, 

6; = di+l + y ( e 1  -&), 15 i 5 n -  1 ) 

where E > 0 is a design parameter that will be specified 
shortly. The positive constants ai are chosen such that 
the roots of S" + aisn-' + * + ( ~ ~ - 1 s  + an = 0 have 
negative real parts. Let <; = 9, = 
[<I , . .  . , <"IT and V, = tTP<, where P = PT > 0 is the 
solution of the Lyapunov equation F ( A  - HC) + ( A  - 
HC)TP = - I .  Boundedness of all signals of the closed- 
loop system can be proved by an argument similar to 
the one in Section 4,l.l. First, it is not difficult to 
show that for all (e,6) E {V 5 c4) n n6, there exist 
constants q, q > 0 such that the sets {VI 5 q} and 
{V, 5 *e2} are positively invariant. Next, using the 
results of [l, Section 51, for all (e, 8, (, <) belonging to 
the set 

1 5 i 5 n, 

R =  {{v 5 c4) n 06) x {VI 5 q} x (5 5 c7e2), 

the derivative of V satisfies 

V 5 -eTQe + kee + kad, where k, > 0. 

Hence for all d < d* = k(c4-cs-ca 2ka 1 and E c e* = 

R is positively invariant. Using the difference in speeds 
between the slow and fast variables and the fact that 

5 - ( l / 2 e ) ~ ~ < ~ [ z  outside {Vc 5 c,e2} it can be shown 
that the trajectory enters the set R during the time 
interval [O,T(e)], where T(E)  + 0 as E + 0. Hence, as 
in the previous case, for sufficiently small d and E ,  all 
the states are bounded and the mean-square tracking 
error is of the order O(E + d). 

k(  c4 --e3 2kk. -ca 1, V < o on {V = c4) n 06, and the set 

4.2 Reconstruction Error With a Known Bound 
We design an additional robustifying control comp- 
nent t o  make the mean-square tracking error arbitrar- 
ily small, irrespective of the bound on the disturbance 
d,  provided this bound is known. Let 

Assume lld(.)Il 5 p(e,z) + kul~v1Il, where 0 5 k, c 1 
and p and k, are known. Take q(e,z) 2 p(e,z) and 
define s = 2eTPb, 
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The control is taken as 

As before, e is replaced by its estimate 2 and the control 
is saturated outside a compact region of interest. The 
arguments of the preceding section can be extended to 
show that 3 E* > 0 and p* > 0 such that V 0 c E < E* 
and 0 < p < p*, all signals are bounded and the mean- 
square tracking error is of the order O(E + p),  where 
the design parameters E and p can be made arbitrarily 
small. 

5 Simulations 

In this section, two simulations are presented to illus- 
trate the points made in the earlier sections. In the 
first simulation, we show the effect of changing vari- 
ous design parameters on the tracking error. In the 
second, we attempt to justify the need to adapt for 
the network's weights. The plant used in all these 
simulations is the same one used in [6, 71, namely 
5 = F(y,  $) + G(y)u, where 

G(y) = 2 + 8in(3?r(y - 0.5)) 

5.1 Simulation 1 
The plant output is required to track a reference signal 
yr that is the output of a low -pass filter with trans- 
fer function (1 + s / ~ O ) - ~ ,  driven by a unity ampli- 
tude square wave input with frequency 0.4 Hz and a 
time average of 0.5. Since rn = 0, there is no need 
to augment integrators at the system's input. Let 
E' gf [-1,1] x [-3,3]. We use 2 RBF networks t_o 
approximate the functions F(y,$) and G(y) over Y .  
The networks have 48 Gaussian nodes with varjance2 
u2 = 4x spread over a regular grid that covers Y .  Off- 
line training is done to obtain weights Ofo  and e,, that 
result in "optimal" approximations of the functions F 
and G. However, the reconstruction errors are still 
quite large in this case, at some points being compara- 
ble to the value of the function itself. Based on the val- 
ues of Of, and e,,, the sets Rf and R, in Assumption 1 
are taken as [ O f ,  -0.1, O f o  +0.1] and [e, -0.1, e,, +0.1], 
where the addition and subtraction are done compo- 
nent wise. The adaptation gains rf and I?, are taken 
for simplicity as 1031. The values of the other design pa- 
rameters are 7 = 40 and k, = 0.7. The initial condition 
~ ( 0 )  is taken as (-0.5,2.0). Fig(1a) shows the tracking 

2See [6] for a definition of this term in relation to RBF 
networks 
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Figure 1: (a)State feedback p = 0.5 (b) Output feed- 
p = 0.5 (c) Output feed- 

p = 0.5 (d) Output feedback 
back, e = 
back e = 
= cc = 0.1 

error for the state feedback case with p = 0.5, Fig(1b) 
is the output feedback case with E = Fig(1c) with 
E reduced to and Fig(1d) with p reduced to 0.1. 
The simulation illustrates several points : (a) by us- 
ing a robustifying component, it is possible to obtain 
reasonable performance even with networks that give 
large reconstruction errors; (b) as E is decreased, we re- 
cover the performance obtained under state feedback; 
and (c) an n-fold decrease in p results in approximately 
an n-fold decrease in the tracking error. Thus, by d e  
creasing p, we can meet more stringent requirements 
on the tracking error. 

5.2 Simulation 2 
The initial weights obtained by off-lime training may 
not be close to their optimal values. This might, for 
example, be the case when the off-line training is done 
(based) on a nominal model that differs considerably 
from the actual one. For definiteness, suppose the func- 
tion F(y,  ai) is any one of the functions 

where kl E [15,17], k2 E [-0.5,0.5] and k3 E [-I, 11 
and that a nominal model is the one used before. For 
simplicity, we take G(y) = 1. Further, the refer- 
ence signal is taken as yr = 0.4. This time, we use 
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Figure 2: (a) No adaptation for weights, no robust control 
(b) Only adaptation for weights (c) Only robust 
control (d) Adaptation for weights and robust 
control. 

an RBF network with 192 Gaussian nodes to “con- 
struct” the fmction F( . ) ,  with the parameters of the 
network chosen as before. Based on the nominal model, 
we do off-line training to  obtain initial estimates Ofo  
and ego. For the purpose of simulation, the values of 
kl, kz and k3 are taken to be 17, 0.4 and 0 respec- 
tively. This choice ensures that with the “nominal” 
weights O f , ,  the reconstruction error is quite large in 
the region of the state space where the reference lies. 
The values of the parameters used in the design are 
I’r = 1031,c = 17 = 20, k, = 0 and p = 0.2. The 
initial condition z(0) is taken as (0.9, -2.75). Fig(2a) 
shows the tracking error for the case when there is no 
adaptation for the weights, that is, I‘r = 0 and no ro- 
bust control component, Fig(2b) for the case when the 
weights are adapted but there is no robust component, 
Fig(2c) for the case when the weights are not adapted 
but there is a robust component, and Fig(2d) for the 
case when the weights are adapted and a robust com- 
ponent is used. In the first case the tracking error is 
quite large because we simply do a crude cancelation 
of the network nonlinearity based on a nominal model. 
When we start adapting for the weights, the difference 
between the function F and its estimate F provided 
by the network decreases and hence the tracking er- 
ror also decreases. However, even with the network 
providing its “best” approximation, there is a residual 

error. In the case where we simply use robust control, 
the performance shows an improvement over the first 
case and is almost comparable to the error in the sec- 
ond case. Finally, in the case where we do both a d a p  
tation and robust control, the network reconstruction 
error decreases and the robust component handles this 
smaller error better. Thus the tracking error is the 
smallest in this case. 

6 Conclusions 

An adaptive output feedback scheme that uses RBF 
neural networks has been presented. The method is 
based on the results of [l] and uses RBF networks to ap- 
proximately construct the system nonlinearities. The 
reconstruction errors of the networks are not required 
to be small, thus allowing for the use of lower-order 
networks. Another merit of the scheme is the use of 
the HGO to estimate the output derivatives, thus dis- 
pensing with the requirement of availability of all the 
states. 
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