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Abstract  

A technique for the longitudinal control of a platoon of 
automated vehicles is presented. A nonlinear model is 
used to represent the vehicle dynamics of each vehicle 
within the platoon. The controlled vehicle is assumed 
to be capable of measuring (or estimating) necessary 
dynamical information from the vehicle immediately 
in front of it by its on-board sensors. The computer 
in the vehicle processes the measured data and gener- 
ates proper throttling and braking actions to follow the 
vehicle in front at a safe distance. Simulations are pre- 
sented for the case of a platoon of four cars following a 
leader. 

1 Introduction 

The subject of design and analysis of various longitudi- 
nal control laws for automated highway systems (AHS) 
has been studied extensively since the late 1960’s. The 
goal is to significantly increase the traffic capacity of ex- 
isting highways through vehicle and roadway automa- 
tion. Furthermore, since many of today’s automobile 
accidents are caused by human error, automating the 
driving process may actually increase highway safety. 
In such a system, vehicles will be driven automati- 
cally with on-board lateral and longitudinal controllers. 
The lateral controller will be used to steer the vehicle 
around corners, make lane changes, and perform addi- 
tional steering tasks. The longitudinal controller will 
be used to maintain a steady velocity if the vehicle 
is traveling alone (conventional cruise control) or fol- 
low a lead vehicle at a safe distance (vehicle following). 
In this paper, we discuss the application of the adap- 
tive control technique of [2] to the vehicle following 
problem. A simplified nonlinear longitudinal power- 
train model is used for designing the controller. The 
vehicle parameters are partially known or completely 
unknown and are adapted for. We m u m e  that the fol- 
lowing measurements are available to the vehicle’s sen- 
sors (i) the relative distance ’ between the controlled 

‘Referred to as the intervehicle spacing in the next seSbn. 

car and the car in front of it and (ii) the forward veloc- 
ity of the controlled car. The other quantities of inter- 
est, namely the relative velocity, relative acceleration 
and the acceleration/deceleration of the-controlled car, 
are estimated from the measured quantities. The idea 
of replacing measured quantities by their estimates has 
also been used in earlier works. For example [9] men- 
tions the possibility of “direct computation” of relative 
velocity and acceleration using the measured value for 
the relative distance. However, in 191 (i) the control 
objective is different from the one we consider here, 
(ii) the model used is a simplified one where all pa- 
rameters are assumed exactly known and there are no 
disturbances and (iii) no analysis is presented for the 
case where estimates are used in feedback. Similarly, 
[l] uses an estimate of the leading vehicle’s accelera- 
tion in the control. However, the measured quantities 
still include (in addition to the relative distance and 
the controlled vehicle’s velocity) the relative velocity 
between the controlled and leading vehicles, and the 
acceleration/deceleration and propulsion force of the 
controlled vehicle. 

2 Longitudinal Vehicle Model 

A widely proposed strategy for effectively increasing 
traffic throughput on existing highways through au- 
tomation is to group the controlled vehicles into tightly 
spaced vehicle group formations called platoons [12]. 
A configuration of a platoon of N + l  vehicles is shown 
in Fig 1. The lead vehicle is numbered 0 and the ith 
follower (henceforth referred to as the ith vehicle) is 
numbered i. Li denotes the length of the ith vehicle 
and xi its position. Let di = xi-1 -xi-Li  fori = 1,2, ... 
, N. is the intervehicle spacing between the (i - 1)th 
and ith vehicles. In developing a model for the system, 
we assume that the road surface is horizontal and that 
all vehicles travel in the same direction at all times. 
jFrom Newton’s Second Law, the relationship between 
the acceleration of the ith vehicle, its propulsion force, 
and the drag forces acting on it can be derived as 

mixi = fi - k d i x i 2  - d + Q i ( t )  (1) 
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Figure 1: A platoon of N + l  vehicles 

where mi is the mass of the vehicle, xi its acceleration, 
fi the propulsion force, kdjxj2 the aerodynamic drag 
force, d a nominal constant mechanical drag and dl, (t) 
the resultant of the external disturbances (such as wind 
gust, ... etc.) The propulsion system which represents 
the engine dynamics of the vehicle can be modeled as 
a fist order system [l] 

(2) 
1 
7: 

A = -+fi + U i )  + 
where ri denotes the vehicle’s engine time-constant, uj 

is the throttle/brake input and d2i (t) is a disturbance 
term (possibly due to engine transmission variations, ... 
etc.) This model differs from the one in [l] in that both 
the engine timeconstant and the mechanical drag term 
are independent of the vehicle’s velocity. However, we 
note that the effects of neglecting this dependence can 
be incorporated into the disturbance terms dl , ( t )  and 
d2, (t). The constaints kdi , m; and Ti are unknown but 
belong to known compact subsets of R’. 

3 Control Objective and Design 

The dynamics of the ith vehicle maybe described by 
the state vector [ & , v j , f f ,  where vi = Si is the ith 
vehicle’s velocity. With this choice of state variables, 
(1) and (2) maybe rewritten as 

} (3) 
di = v i-1 - Vi, 

f i  = ( - f i  + ui)/Ti + &i(t) 

di = ( f j  - kdiVi2 - d + dli(t))/mj 

for 1 5 i 5 N. The control objective is to design ui 
in such a way that the intervehicle spacing Si tracks 
a desired reference. It is well known (see for example 
[8, lo]) that for the case where the desired intervehi- 
cle spacing is constant, asymptotic platoon stability 
can be guaranteed only if the lead vehicle is transmit- 
ting its velocity and acceleration to  all other vehicles in 
the platoon. This approach yields stable platoons with 
small intervehicle spacings at the cost of introducing 
and maintaining continuous intervehicle communica- 
tion with high reliability and small delays. In [3], is 

is shown that platoon stability can be recovered in a 
non-cooperative or autonomous operation if a speed de- 
pendent spacing policy is adopted, which incorporates 
a constant time headway in addition to the constant 
distance. This takes the form ddi = Xvj + &, where 
adj is the desired intervehicle spacing and X and AO are 
suitably chosen positive constants. The parameter X is 
the time headway and its effect is to  introduce more 
spacing between the ith and (i - 1)th vehicles as the 
velocity of the ith vehicle increases, which intuitively 
makes sense. Following [ll], we set XO t o  zero, which 
basically allows for the minimum desired distance b e  
tween two adjacent vehicles to  be zero provided the 
vehicle that is following has zero velocity. With this 
choice, we define the plant output as ypi = Si - Xvj. 
The control objective is thus to  regulate ypj to  zero. 
Differentiating the output twice and making use of (3), 
the following error equation is obtained 

Ai = & + BjT[F;(vj, v i )  + Gui] + Di(t)  (4) 

where 8i = [kdj/mi, 1/T;, kdi/(miTi), I/(miTi)lT, 
Fj(.) = [2Xvjdj ,Xdi ,X~i .~ ,X~~,  G = [0,0,O,-XIT and 
Di(t)  = -X(dli/7i + dli + dzi) /mi .  From the knowl- 
edge of the intervals in which kdi ,  mi and ~i lie, it is 
possible to calculate the compact subset of R4 to  which 
8i belongs. By defining Ypi = [ppi,ypj]T, it is possible 
to  rewrite (4) as 

Y p i  = Amypi +b{ KYpi +8j +8iT [Fi (Vi, pii) +Gu j] + D  j ( t )  }, 

where (A,  b) is a controllable canonical pair that repre- 
sents a chain of two integrators and K is chosen. such 
that A,  = A - bK is Hurwitz. To estimate 6i, 6i and 
vi, we use two high-gain observers, driven by di and 
w j  respectively. Denote the estimates by 6 i I  t$ and Gj 

respectively. The high-gain observers are described by 
the following equations 

W l i  = w2:  + &(& - W l i ) / E  

W Z i  = w 3 i  + ,&(Si - W l i ) / 2  

Ji = w2,, ii = WQi 

Wsi = h ( b j  - wli)/e3 

and 
ilj = ~2~ + a1(v;  - . z I ~ ) / E  

i Z i  = a2(vi - ZI;)/E 2 

vi = ZZi 

where E > 0 and the a’s and p’s are chosen such that 
the roots of s2+cUls+Cr2 = 0 and s3+/31s:+/32s+/33 = 0 
have negative real parts. Let ypi = di - Xdj,Ypi = 
[upi, spi]’ and assume that an upper bound on the term 
Dj(t)  is known. Then the control uj is designed as 

A A  

- T  

( 5 )  
-8j - ej Fj(vi,&) - K P P ~  + vri 

ui = 
8jTG 
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where 6i is an estimate of 8i and vTi is a robustify- 
ing component designed using the Lyapunov redesign 
technique,e.g., [6, Section 13.11. The control ui is 
saturated outside a compact set of interest to pre- 
vent the peaking induced by the high-gain observers 
[4].2 The parameter adaptation law is chosen as in 
[2]. In particular, let P = PT > 0 be the solution 
of the Lyapunov equation PA,  + A:P = -I. Define 
4i = 2Y;Pb[Fi(vi, zii)+G~i] and let I' = I'T > 0. Then 

the adaptation law is chosen as ê i = Proj(8, c j ) ,  where 
Proj(&,&)=I'4i for ê j E R and is modified outside R 
to ensure that @TI'-'[& - I'cji] 5 0 and gj(t) belongs 
to  a compact set 06 V t 1 0, where a6 2 R. Starting 
with the Lyapunov function candidate 

and proceeding along the lines of [2], it is possible to 
show ultimate boundedness of the spacing deviation 
error. Though the proof in [2] was done for the single 
output case, an extension to the multi-output case is 
not very difficult, and has been addressed, for example, 
in [7]. It is worth mentioning that the proof in [2] only 
guarantees the boundedness of ypj and 3ipj. To argue 
boundedness of bj, &, &, vi and zii, we first assume that 
there exist achievable bounds on the leading vehicle's 
velocity vo [ll] and acceleration Z;O [3]. Noting that 

and that ypl is bounded and X > 0, we see that VI is 
bounded. Extending this argument inductively shows 
that vi is bounded for all i. Since ypj = 6; - Xvi, 
boundedness of Si follows. Furthermore, since-each V j  

is bounded, so is Si = vi-1 - vi. From ypi = 6j - XVi, 

each z i j  is bounded. And finally, since 8j = 8j-1 - zii, 
each & is bounded. 

4 Simulations 

In this section, we present two sets of simulations 
for a platoon of five cars. In all simulations, we as- 
sume that all vehicles are initially traveling at a ve- 
locity of 15 m/s. The lead vehicle's velocity, accel- 
eration and jerk profiles are shown in Fig 2. We 
assume that mi E [l100,1550]kg, ~i E [0.15,0.25]s, 
kdi E [0.1,0.5]Ns2/m2 and d = 100N. These values 
are chosen to be the same as or close to the ones in 
[l, 111. For the first set of simulations, we use a value 
of X = 0.9 and for the second X = 0.2. The particular 
values for X are explained in some detail below. 

2For the purpose of simulations, the control is saturated 
at a value slightly higher than the observed value under state 
feedback. 

4.1 Simulation 1 
The value of X = 0.9 is based on the California rule 
of thumb, [3, 111, which suggests an intervehicle spac- 
ing of one vehicle length for every 10 m.p.h. As- 
suming an average vehicle length of 4 m, this trans- 
lates to a value of X = 0.9 In all simulations, we as- 
sume the following values for the vehicle parameters, 
ml = 1300, 71 = 0.16, kdl = 0.3, ~ 7 ~ 2  = 1400, 7 2  = 
0.22, k d Z  = 0.35, m3 = 1200, 73 = 0.18, k+ = 
0.2, m4 = 1350, 74 = 0.24 and kd4 = 0.45. We assume 
that dzi is identically zero, but dli/rni is as shown in 
Fig 3. The disturbance profiles are similar to, though 
not identical to the ones in [l]. In particular, they are 
"smooth" functions of time. Fig 4 shows the velocity 
and acceleration profiles for the following vehicles, the 
spacing deviation errors, and their positions relative to 
the leader for the case when no robustifying control is 
used. Fig 5 is for the case where a robustifying control 
is used. The spacing deviation error shows a marked 
decrease in this case. The spacing deviations do not 
exceed 1.6 cm in magnitude. The above results com- 
pare favorably with the results of [ l l ,  11. It is worth 
mentioning however, that the spacing policy in [l] is 
different from the one we adopt here. The spacing de- 
viation errors reported above are also of the same order 
of magnitude as in 18, 51, where the spacing deviation 
errors are between 1 and 10 cm. However, as with [l], 
the results are not directly comparable owing to differ- 
ences in the vehicle model and/or the'spacing policy 
adopted. 

4.2 Simulation 2 
The California rule of thumb takes into account human 
reaction times and delays [3]. In automatic vehicle fol- 
lowing, human delays are eliminated and we can af- 
ford to  have a smaller time headway without affecting 
safety. In [3], based on a worst case stopping scenario, 
where the lead vehicle is assumed to  be at full decel- 
eration and the following vehicle is at full acceleration 
at the instant the stop maneuver commences, a value 
of X in the range of 0.1 to  0.2 is obtained. For this 
simulation, we assume X = 0.2, dli ( t )  is not zero and a 
robustifying component is used. Fig 6 shows the results 
for this case. 

5 Conclusions 

We have presented a new technique for the longitu- 
dinal control problem. Good performance has been 
achieved in the presence of parameter uncertainties and 
unknown time-varying disturbances. The main contri- 
bution of this method is the use of high-gain observers 
to reduce the number of sensor measurements. In par- 
ticular, we do not require direct measurement of the 
relative velocity or acceleration between the controlled 
and leading vehicles or the controlled vehicle's acceler- 
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Figure 2: Velocity, acceleration and jerk profiles for the 
leader. 

ation. The spacing deviation errors reported are of the 
same order of magnitude as in [l, 5, 8, 111. 
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